zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12424    Accepted Submission(s): 6102


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3
     
    向量的运算
     1 #include<iostream>
     2 #include<vector>
     3 //#include<fstream>
     4 using namespace std;
     5 struct xd
     6 {
     7     double x1, y1, x2, y2;
     8 };
     9 double cal(double x1, double y1, double x2, double y2)
    10 {
    11     return x1*y2-y1*x2;
    12 };
    13 int main()
    14 {
    15     int n,i,j;
    16     double pos,m,l;
    17     vector<xd> vec;
    18     //ifstream in("data.txt");
    19     while(cin>>n&&n)
    20     {
    21         int num=0;
    22         for(i=0;i<n;i++)
    23         {
    24             xd temp;
    25             cin>>temp.x1>>temp.y1>>temp.x2>>temp.y2;
    26             for(j=0;j<i;j++)
    27             {
    28                 pos=cal(vec[j].x2-vec[j].x1, vec[j].y2-vec[j].y1, temp.x2-temp.x1, temp.y2-temp.y1);
    29                 m=cal(vec[j].x2-vec[j].x1, vec[j].y2-vec[j].y1, vec[j].x1-temp.x1, vec[j].y1-temp.y1)/pos;
    30                 l=cal(temp.x1-vec[j].x1, temp.y1-vec[j].y1, temp.x2-temp.x1, temp.y2-temp.y1)/pos;
    31                 if(m>=0&&m<=1&&l>=0&&l<=1)
    32                 {
    33                     num++;
    34                 }
    35             }
    36             vec.push_back(temp);
    37         }
    38         vec.clear();
    39         cout<<num<<endl;
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    【DATAGUARD】物理dg配置客户端无缝切换 (八.2)--Fast-Start Failover 的配置
    【DATAGUARD】物理dg配置客户端无缝切换 (八.1)--Data Guard Broker 的配置
    我的oracle 健康检查报告
    【DATAGUARD】物理dg在主库丢失归档文件的情况下的恢复(七)
    【DATAGUARD】物理dg的failover切换(六)
    【DATAGUARD】物理dg的switchover切换(五)
    【故障处理】ORA-12162 错误的处理
    【RAC】 RAC For W2K8R2 安装--结尾篇(十)
    【RAC】 RAC For W2K8R2 安装--安装过程中碰到的问题(九)
    【RAC】 RAC For W2K8R2 安装--卸载(八)
  • 原文地址:https://www.cnblogs.com/zhaopeng938/p/9419701.html
Copyright © 2011-2022 走看看