zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12424    Accepted Submission(s): 6102


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3
     
    向量的运算
     1 #include<iostream>
     2 #include<vector>
     3 //#include<fstream>
     4 using namespace std;
     5 struct xd
     6 {
     7     double x1, y1, x2, y2;
     8 };
     9 double cal(double x1, double y1, double x2, double y2)
    10 {
    11     return x1*y2-y1*x2;
    12 };
    13 int main()
    14 {
    15     int n,i,j;
    16     double pos,m,l;
    17     vector<xd> vec;
    18     //ifstream in("data.txt");
    19     while(cin>>n&&n)
    20     {
    21         int num=0;
    22         for(i=0;i<n;i++)
    23         {
    24             xd temp;
    25             cin>>temp.x1>>temp.y1>>temp.x2>>temp.y2;
    26             for(j=0;j<i;j++)
    27             {
    28                 pos=cal(vec[j].x2-vec[j].x1, vec[j].y2-vec[j].y1, temp.x2-temp.x1, temp.y2-temp.y1);
    29                 m=cal(vec[j].x2-vec[j].x1, vec[j].y2-vec[j].y1, vec[j].x1-temp.x1, vec[j].y1-temp.y1)/pos;
    30                 l=cal(temp.x1-vec[j].x1, temp.y1-vec[j].y1, temp.x2-temp.x1, temp.y2-temp.y1)/pos;
    31                 if(m>=0&&m<=1&&l>=0&&l<=1)
    32                 {
    33                     num++;
    34                 }
    35             }
    36             vec.push_back(temp);
    37         }
    38         vec.clear();
    39         cout<<num<<endl;
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    iOS开发-文件管理(一)
    浅析栈区和堆区内存分配的区别
    浅谈Block传值-匿名函数(代码块)
    cell的各种使用和赋值 总结
    类方法和对象方法的区别
    属性传值 ,代理传值,单例
    类目,延展,协议
    任意点 并查集
    Codeforces 145E. Lucky Queries 线段树
    Codeforces 103B. Cthulhu 并查集运用
  • 原文地址:https://www.cnblogs.com/zhaopeng938/p/9419701.html
Copyright © 2011-2022 走看看