zoukankan      html  css  js  c++  java
  • 实验3:OpenFlow协议分析实践

    一、实验目的

    1.能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
    2.够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

    二、实验环境

    1.下载虚拟机软件Oracle VisualBox;
    2.在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

    三、实验要求

    (一)基本要求
    1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。

    主机 IP地址
    h1 192.168.0.101/24
    h2 192.168.0.102/24
    h3 192.168.0.103/24
    h4 192.168.0.104/24
    2.保存拓扑文件

    3.运行wireshark,选择any模式进行抓包,开启另一个终端,命令行运行031902344.py文件,运行pingall

    4.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程

    4.1.OFPT_HELLO控制器6633端口 ---> 交换机36052端口,从控制器到交换机

    4.2.OFPT_HELLO 源端口36052-> 目的端口6633,从交换机到控制器,此处协议为openflow1.5

    控制器与交换机建立连接,并使用OpenFlow 1.0

    4.3.OFPT_FEATURES_REQUEST 源端口6633 -> 目的端口36052,从控制器到交换机

    控制器请求交换器的特征信息

    4.4.OFPT_SET_CONFIG 源端口6633 -> 目的端口36052,从控制器到交换机

    控制器要求交换机按照所给出的信息进行配置

    4.5.OFPT_PORT_STATUS 源端口36052-> 目的端口6633,从交换机到控制器

    当交换机端口发生变化时,交换机告知控制器相应的端口状态

    4.6.OFPT_FEATURES_REPLY 源端口36052-> 目的端口6633,从交换机到控制器

    交换机告知控制器它的特征信息
    4.7.OFPT_PACKET_IN 源端口36052-> 目的端口6633,从交换机到控制器

    交换机告知控制器有数据包进来,请求控制器指示
    4.8.OFPT_PACKET_OUT 源端口6633 -> 目的端口36052,从控制器到交换机

    控制器要求交换机按照所给出的action进行处理
    4.9.OFPT_FLOW_MOD 源端口6633 -> 目的端口36052,从控制器到交换机

    控制器对交换机进行流表的添加、删除、变更等操作

    5.交换机与控制器建立通信时是使用TCP协议还是UDP协议?
    如图所示为TCP协议

    (二)进阶要求

    将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。
    1.HELLO

    struct ofp_header {
        uint8_t version;    /* OFP_VERSION. */
        uint8_t type;       /* One of the OFPT_ constants. */
        uint16_t length;    /* Length including this ofp_header. */
        uint32_t xid;       /* Transaction id associated with this packet.
                               Replies use the same id as was in the request
                               to facilitate pairing. */
    };
    

    2.FEATURES_REQUEST

    代码同上

    3.SET_CONFIG

    /* Switch configuration. */
    struct ofp_switch_config {
        struct ofp_header header;
        uint16_t flags;             /* OFPC_* flags. */
        uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                       send to the controller. */
    };
    

    4.PORT_STATUS

    struct ofp_port_status {
        struct ofp_header header;
        uint8_t reason;          /* One of OFPPR_*. */
        uint8_t pad[7];          /* Align to 64-bits. */
        struct ofp_phy_port desc;
    };
    

    5.FEATURES_REPLY

    /* Description of a physical port */
    struct ofp_phy_port {
        uint16_t port_no;
        uint8_t hw_addr[OFP_ETH_ALEN];
        char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
     
        uint32_t config;        /* Bitmap of OFPPC_* flags. */
        uint32_t state;         /* Bitmap of OFPPS_* flags. */
     
        /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
         * unsupported or unavailable. */
        uint32_t curr;          /* Current features. */
        uint32_t advertised;    /* Features being advertised by the port. */
        uint32_t supported;     /* Features supported by the port. */
        uint32_t peer;          /* Features advertised by peer. */
    };
    /* Switch features. */
    struct ofp_switch_features {
        struct ofp_header header;
        uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                                   a MAC address, while the upper 16-bits are
                                   implementer-defined. */
     
        uint32_t n_buffers;     /* Max packets buffered at once. */
     
        uint8_t n_tables;       /* Number of tables supported by datapath. */
        uint8_t pad[3];         /* Align to 64-bits. */
     
        /* Features. */
        uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
        uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */
     
        /* Port info.*/
        struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                          is inferred from the length field in
                                          the header. */
    };
    

    6.PACKET_IN

    struct ofp_packet_in {
        struct ofp_header header;
        uint32_t buffer_id;     /* ID assigned by datapath. */
        uint16_t total_len;     /* Full length of frame. */
        uint16_t in_port;       /* Port on which frame was received. */
        uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
        uint8_t pad;
        uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                                   so the IP header is 32-bit aligned.  The
                                   amount of data is inferred from the length
                                   field in the header.  Because of padding,
                                   offsetof(struct ofp_packet_in, data) ==
                                   sizeof(struct ofp_packet_in) - 2. */
    };
    

    7.PACKET_OUT

    struct ofp_packet_out {
        struct ofp_header header;
        uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
        uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
        uint16_t actions_len;         /* Size of action array in bytes. */
        struct ofp_action_header actions[0]; /* Actions. */
        /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                         from the length field in the header.
                                         (Only meaningful if buffer_id == -1.) */
    };
    

    8.FLOW_MOD

    /* Flow setup and teardown (controller -> datapath). */
    struct ofp_flow_mod {
        struct ofp_header header;
        struct ofp_match match;      /* Fields to match */
        uint64_t cookie;             /* Opaque controller-issued identifier. */
     
        /* Flow actions. */
        uint16_t command;             /* One of OFPFC_*. */
        uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
        uint16_t hard_timeout;        /* Max time before discarding (seconds). */
        uint16_t priority;            /* Priority level of flow entry. */
        uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                         Not meaningful for OFPFC_DELETE*. */
        uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                         matching entries to include this as an
                                         output port.  A value of OFPP_NONE
                                         indicates no restriction. */
        uint16_t flags;               /* One of OFPFF_*. */
        struct ofp_action_header actions[0]; /* The action length is inferred
                                                from the length field in the
                                                header. */
    };
    

    实验总结

    1.本次实验遇到的问题:
    本次实验难度适中,总体实验过程流畅,没有很大的问题。
    2.实验心得:
    通过本次实验,我们学会了运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包,了解如何借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制,对wireshark的使用更加熟练。在本次实验中,我第一次抓包之后有几个数据没有记录,然后进行了第二次抓包,发现端口号有变化。为了让实验结果更加具有可读性,只能把数据再次全部截图。这提醒我记录数据要完整有连贯性,少记录一个数据可能整组数据就没有用了。本次实践进一次锻炼了我们的能力,相信这对我们未来的学习将会有很大的帮助。

  • 相关阅读:
    第60天:Requests的基本用法
    第59天: Web 开发 Django 模型
    第58天: Web 开发 Django 入门
    第57天: Flask 用户登录 Flask-Login
    第56天:urllib 包基本使用
    第55天:爬虫的介绍
    第54天:Python 多线程 Event
    第53天: Python 线程池
    第52天:python multiprocessing模块
    第51天: Python Queue 入门
  • 原文地址:https://www.cnblogs.com/zhaoruiyan955/p/15345331.html
Copyright © 2011-2022 走看看