zoukankan      html  css  js  c++  java
  • 事件处理程序EventUtil

    /**********事件处理程序**********
    *EventUtil.js
    *浏览器兼容,《高三》13章 P354
    *2014-12-8
    ********************************/
    var EventUtil = {
        addHandler: function (element, type, handler) {
            if (element.addEventListener) {
                element.addEventListener(type, handler, false);
            }
            else if (element.attachEvent) {
                element.attachEvent("on" + type, handler);
            }
            else {
                element["on" + type] = handler;
            }
        },
        removeHandler: function (element, type, handler) {
            if (element.removeEventListener) {
                element.removeEventListener(type, handler, false);
            }
            else if (element.detachEvent) {
                element.detachEvent("on" + type, handler);
            }
            else {
                element["on" + type] = null;
            }
        },

        getEvent: function (event) {
            return event ? event : window.event;
        },
        getTarget: function (event) {
            return event.target || event.srcElement;
        },
        preventDefault: function (event) {
            if (event.preventDefault) {
                event.preventDefault();
            }
            else {
                event.returnValue = false;
            }
        },

        /********由于IE不支持事件捕获,因此这个方法只适用于事件冒泡阶段*********/
        stopPropagation: function (event) {
            if (event.stopPropagation) {
                event.stopPropagation();
            }
            else {
                event.cancelBubble = true;
            }
        },

        /*****按键时触发,返回按键所代表字符的ASCII码******/
        getCharCode: function (event) {
            if (typeof event.charCode == "number") {
                return event.charCode;
            }
            else {
                return event.keyCode; //IE8之前、Opera
            }
        }
    }

  • 相关阅读:
    [国家集训队]数颜色 / 维护队列
    [SP3267]DQUERY
    扩展欧几里得算法详解(exgcd)
    [CTSC2018]混合果汁
    极角排序那些事
    向量的点乘与叉乘学习笔记
    [APIO2014]序列分割
    CF1148D-Dirty Deeds Done Dirt Cheap
    CF176E Archaeology(set用法提示)
    【网络流24题】最长不下降子序列问题
  • 原文地址:https://www.cnblogs.com/zhaow/p/9754389.html
Copyright © 2011-2022 走看看