zoukankan      html  css  js  c++  java
  • 使用split_size优化的ODPS SQL的场景

    使用split_size优化的ODPS SQL的场景

    首先有两个大背景需要说明如下:
    说明1:split_size,设定一个map的最大数据输入量,单位M,默认256M。用户可以通过控制这个变量,从而达到对map端输入的控制。设置语句:set odps.sql.mapper.split.size=256。一般在调整这个设置时,往往是发现一个map instance处理的数据行数太多。

    说明2:小文件越多,需要instance资源也越多,MaxCompute对单个Instance可以处理的小文件数限制为120个,如此造成浪费资源,影响整体的执行性能(文件的大小小于块Block 64M的文件)。

    场景一:单记录数据存储太少

    原始Logview Detail:

    可以发现Job只调起一个Map Instance,供处理了156M的数据,但这些数据共有5千多万的记录(单记录平均3个byte),花费了25分钟。
    此外,从TimeLine看可以发现,整个Job耗费43分钟,map占用了超过60%的时间。故可对map进行优化。

    优化手段:调小split_size为16M

    优化之后的logview:

    优化后,可以发现,Job调起了7个Map Instance,耗时4分钟;某一个Map处理了27M的数据,6百万记录。(这里可以看出set split_size只是向Job提出申请,单不会严格生效,Job还是会根据现有的资源情况等来调度Instance)因为Map的变多,Join和Reduce的instance也有增加。整个Job的执行时间也下降到7分钟。

    场景二:用MapJoin实现笛卡尔积

    原始logview:

    可以发现,Job调起了4个Map,花费了3个小时没有跑完;查看详细Log,某一个Map因为笛卡尔的缘故,生成的数据量暴涨。
    综合考虑,因为该语句使用Mapjoin生成笛卡尔积,再筛选符合条件的记录,两件事情都由map一次性完成,故对map进行优化。

    策略调低split_size
    优化后的logview:

    优化后,可以看到,Job调度了38个map,单一map的生成数据量下降了,整体map阶段耗时也下降到37分钟。
    回头追朔这个问题的根源,主要是因为使用mapjoin笛卡尔积的方式来实现udf条件关联的join,导致数据量暴涨。故使用这种方式来优化,看起来并不能从根本解决问题,故我们需要考虑更好的方式来实现类似逻辑。



    本文作者:祎休

    原文链接

    本文为云栖社区原创内容,未经允许不得转载。

  • 相关阅读:
    SpringMVC:拦截器拦截时机和原理
    SpringBoot:MessageConverter自动配置原理
    SpringMVC:返回值处理器原理和MessageConverter原理
    SpringMVC:自定义Converter
    XML-RPC协议学习
    ContentControl 与 ViewModel (一)
    C# 获取相对路径(绝对路径转相对路径)
    WPF 最简单的TextBox水印
    WPF/Silverlight开发的15个最佳实践(转发)
    WPF 打印崩溃问题( 异常:Illegal characters in path/路径中有非法字符)
  • 原文地址:https://www.cnblogs.com/zhaowei121/p/10601093.html
Copyright © 2011-2022 走看看