zoukankan      html  css  js  c++  java
  • MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

    PDF格式教材下载 Sequences and Series

    本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

    Review

    Determine whether the series converges.

    1. $displaystylesum_{n=0}^{infty}{nover n^2+4}$

    Solution:

    When $n > 4$ we have $${nover n^2+4} > {nover n^2+n} = {1over n+1} o ext{diverge}$$ By $p$-series test and comparison test, it diverges.

    2. $displaystyle{1over1cdot2}+{1over3cdot4}+{1over5cdot6} +{1over7cdot8}+cdotscdots$

    Solution: $$s=sum_{n=0}^{infty}{1over (2n+1)(2n+2)}$$ and $${1over (2n+1)(2n+2)} = {1over 4n^2+6n+2} < {1over n^2} o ext{converge}$$ By $p$-series test and comparison test, it converges.

    3. $displaystylesum_{n=0}^{infty}{nover(n^2+4)^2}$  

    Solution: $${nover(n^2+4)^2} < {nover (n^2)^2} = {1over n^3} o ext{converge}$$ By $p$-series test and comparison test, it converges.

    4. $displaystylesum_{n=0}^{infty}{n!over8^n}$  

    Solution: $$lim_{n oinfty}a_{n+1}/a_n={(n+1)!over8^{n+1}}cdot{8^nover n!}={n+1over8} oinfty$$ By ratio test, it diverges.

    5. $displaystyle1-{3over4}+{5over8}-{7over12}+{9over16}+ cdotscdots$

    Solution: $$s=1+sum_{n=1}^{infty}(-1)^n{2n+1over4n}$$ and $$lim_{n oinfty}{2n+1over4n}={1over2} eq0$$ Thus it diverges.

    6. $displaystylesum_{n=0}^{infty}{1oversqrt{n^2+4}}$

    Solution: $$lim_{n oinfty}{1oversqrt{n^2+4}}ig/{1over n} = lim_{n oinfty} {noversqrt{n^2+4}}=1 > 0$$ Since ${1over n}$ is harmonic series which is divergent, by limit comparison test, the original series is divergent.

    7. $displaystylesum_{n=0}^{infty}{sin^3nover n^2}$

    Solution: $${sin^3nover n^2}leq{1over n^2} o ext{converge}$$ By $p$-series test and comparison test, it converges.

    8. $displaystylesum_{n=0}^{infty}{nover e^n}$

    Solution: $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{n+1over e^{n+1}}cdot{e^nover n}={1over e} < 1$$ By ratio test, it converges.

    9. $displaystylesum_{n=0}^{infty}{n!over1cdot3cdot5cdots(2n-1)}$  

    Solution: $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{(n+1)!over1cdot3cdot5cdots(2n+1)}cdot{1cdot3cdot5cdot(2n-1)over n!}$$ $$=lim_{n oinfty}{n+1over (2n+1)cdot n}=0 < 1$$ By ratio test, it converges.

    10. $displaystylesum_{n=1}^{infty}{1over nsqrt{n}}$  

    Solution: $$int_{1}^{infty}{dxover xsqrt{x}}=int_{1}^{infty}x^{-{3over2}}dx=-2x^{-{1over2}}Big|_{1}^{infty}=2 o ext{converge}$$ By integral test, it converges.

    11. $displaystyle{1over2cdot3cdot4}+{2over3cdot4cdot5} +{3over4cdot5cdot6}+{4over5cdot6cdot7}+cdotscdots$

    Solution: $$s=sum_{n=0}^{infty}{n+1over(n+2)(n+3)(n+4)}$$ and $${n+1over(n+2)(n+3)(n+4)} < {n+1over(n+1)(n+1)(n+1)} = {1over(n+1)^2} < {1over n^2} o ext{converge}$$ By $p$-series test and comparison test, it converges.

    12. $displaystylesum_{n=1}^{infty}{1cdot3cdot5cdots(2n-1)over(2n)!}$  

    Solution: $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{1cdot3cdot5cdots(2n+1)over(2n+2)!} cdot {(2n)!over1cdot3cdot5cdots(2n-1)}$$ $$=lim_{n oinfty}{2n+1over(2n+2)(2n+1)}=0 < 1$$ By ratio test, it converges.

    13. $displaystylesum_{n=0}^{infty}{6^nover n!}$  

    Solution: $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty} {6^{n+1}over(n+1)!} cdot {n!over6^n}lim_{n oinfty}{6over n+1}=0 < 1$$ By ratio test, it converges.

    14. $displaystylesum_{n=1}^{infty}{(-1)^{n-1}oversqrt{n}}$  

    Solution: $$lim_{n oinfty}{1oversqrt{n}}=0$$ and it is decreasing. By alternating series test, it converges (conditionally).

    15. $displaystylesum_{n=1}^{infty}{2^n3^{n-1}over n!}$

    Solution: $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{2^{n+1} 3^{n}over(n+1)!}cdot {n!over2^n3^{n-1}}=lim_{n oinfty}{6over n+1}=0 < 1$$ By ratio test, it converges.

    16. $displaystyle1+{5^2over2^2}+{5^4over(2cdot4)^2}+{5^6over(2cdot4 cdot6)^2}+{5^8over(2cdot4cdot6cdot8)^2}+cdotscdots$  

    Solution: $$s=sum_{n=0}^{infty}{5^{2n}over4^{n}cdot(n!)^2}$$ and $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{25^{n+1} over4^{n+1}cdot((n+1)!)^2}cdot{4^ncdot(n!)^2over25^n}$$ $$=lim_{n oinfty}{25over4(n+1)^2}=0 < 1$$ By ratio test, it converges.

    17. $displaystylesum_{n=1}^{infty}sin{1over n}$  

    Solution: $$lim_{n oinfty}{sin{1over n}over{1over n}}=1 > 0$$ Since ${1over n}$ is harmonic series which is divergent, by limit comparison test, the original series is divergent. Find the interval and radius of convergence; you need not check the endpoints of the intervals.

    18. $displaystylesum_{n=0}^{infty}{2^nover n!}x^n$

    Solution:

    By ratio test, we have $$lim_{n oinfty}{2^{n+1}over(n+1)!}cdot{n!over2^n}cdotig|{x^{n+1}over x^{n}}ig|=lim_{n oinfty}{2|x|over n+1}=0Rightarrow xin(-infty, infty)$$

    19. $displaystylesum_{n=0}^{infty}{x^nover1+3^n}$

    Solution:

    By ratio test, we have $$lim_{n oinfty} {1+3^nover1+3^{n+1}}cdotig|{x^{n+1}over x^{n}}ig|={1over3}|x| < 1Rightarrow xin(-3, 3)$$

    20. $displaystylesum_{n=1}^{infty}{x^nover ncdot3^n}$  

    Solution:

    By ratio test, we have $$lim_{n oinfty}{ncdot3^nover(n+1)cdot3^{n+1}}cdot|x|={1over3}|x| < 1Rightarrow xin(-3, 3)$$

    21. $displaystyle x+{1over2}cdot{x^3over3}+{1cdot3over2cdot4}cdot {x^5over5}+{1cdot3cdot5over2cdot4cdot6}cdot{x^7over7} +cdots$  

    Solution: $$s=sum_{n=0}^{infty}{(2n)!ig/2^ncdot n!over2^ncdot n!}cdot {x^{2n+1}over2n+1}=sum_{n=0}^{infty}{(2n)!over 4^ncdot(n!)^2}cdot {x^{2n+1}over2n+1}$$ and by ratio test, we have $$lim_{n oinfty}{(2n+2)!over4^{n+1}cdot((n+1)!)^2}cdot{1over2n+3} cdot {4^ncdot(n!)^2over(2n)!}cdot(2n+1)cdotig|{x^{2n+3}over x^{2n+1}}ig|$$ $$=lim_{n oinfty}{(2n+2)(2n+1)cdot (2n+1)over 4(n+1)^2cdot(2n+3)}cdot x^2=x^2 < 1Rightarrow xin(-1, 1)$$

    22. $displaystylesum_{n=1}^{infty}{n!over n^2}x^n$  

    Solution:

    By ratio test, we have $$lim_{n oinfty}{(n+1)!over(n+1)^2}cdot{n^2over n!}cdot|x|=lim_{n oinfty}(n+1)cdot|x| oinfty$$ Thus $R=0$ and it converges only when $x=0$.

    23. $displaystylesum_{n=1}^{infty}{(-1)^nover n^2cdot3^n}x^{2n}$

    Solution:

    By ratio test, we have $$lim_{n oinfty} {n^2cdot3^nover(n+1)^2cdot3^{n+1}}cdot {x^{2n+2}over x^{2n}}={x^2over3} < 1Rightarrow xin(-sqrt3, sqrt3)$$

    24. $displaystylesum_{n=0}^{infty}{(x-1)^nover n!}$  

    Solution: $$lim_{n oinfty}{n!over(n+1)!}cdot|x-1|=0Rightarrow xin(-infty, infty)$$

    Find a series for each function, using the formula for Maclaurin series and algebraic manipulation as appropriate.

    25. $2^x$

    Solution: $$f(0)=2^xig|_{x=0}=1$$ $$f'(0)=2^xcdotlog2ig|_{x=0}=log2$$ $$f''(0)=2^xcdot(log2)^2ig|_{x=0}=(log2)^2$$ $$cdotscdotscdots$$ Thus $$2^x=1+{log2over1!}x+{(log2)^2over2!}x^2+cdots =sum_{n=0}^{infty}{(log2)^nover n!}x^n$$

    26. $log(1+x)$

    Solution: $$f(0)=log(1+x)ig|_{x=0}=0$$ $$f'(0)={1over1+x}ig|_{x=0}=1$$ $$f''(0)={-1over(1+x)^2}ig|_{x=0}=-1=-1!$$ $$f'''(0)={2over(1+x)^3}ig|_{x=0}=2=2!$$ $$f^{(4)}(0)={-6over(1+x)^4}ig|_{x=0}=-6=-3!$$ $$cdotscdotscdots$$ Thus $$log(1+x)=x-{1!over2!}x^2+{2!over3!}x^3-{3!over4!}x^4+cdots =sum_{n=0}^{infty}{(-1)^nover n+1}x^{n+1}$$

    27. $displaystylelogleft({1+xover1-x} ight)$

    Solution: $$log(1+x)=sum_{n=0}^{infty}{(-1)^nover n+1}x^{n+1} = x - {1over2}x^2+{1over3}x^3-{1over4}x^4+cdots$$ $$log(1-x)=sum_{n=0}^{infty}{(-1)^nover n+1}(-x)^{n+1} = sum_{n=0}^{infty}{-1over n+1}x^{n+1}=-x - {1over2}x^2-{1over3}x^3-{1over4}x^4+cdots$$ Thus $$logig({1+xover1-x}ig)=log(1+x)-log(1-x)$$ $$=2x+{2over3}x^3+{2over5}x^5+cdots =sum_{n=0}^{infty}{2over 2n+1}x^{2n+1}$$

    28. $sqrt{1+x}$

    Solution: $$f(0)=sqrt{1+x}ig|_{x=0}=1$$ $$f'(0)={1over2}(1+x)^{-{1over2}}ig|_{x=0}={1over2}$$ $$f''(0)=-{1over4}(1+x)^{-{3over2}}ig|_{x=0}=-{1over4}$$ $$f'''(0)={3over8}(1+x)^{-{5over2}}ig|_{x=0}={3over8}$$ $$f^{(4)}(0)=-{15over16}(1+x)^{-{7over2}}ig|_{x=0}=-{15over16}$$ $$cdotscdotscdots$$ Thus $$sqrt{1+x}=1+{1over2cdot1!}x-{1over4cdot2!}x^2+{3over8cdot3!}x^3 -{15over16cdot4!}x^4+cdots$$ $$=1+{xover2}+sum_{n=2}^{infty}{(-1)^{n+1}cdot1cdot3cdots(2n-3)over 2^ncdot n!}x^n$$

    29. $displaystyle{1over1+x^2}$

    Solution: $${1over 1-x}=sum_{n=0}^{infty}x^nRightarrow {1over1+x} = sum_{n=0}^{infty}(-x)^n=sum_{n=0}^{infty}(-1)^ncdot x^n$$ $$Rightarrow {1over1+x^2}=sum_{n=0}^{infty}(-1)^ncdot x^{2n}$$

    30. $arctan(x)$

    Solution: $$int{1over1+x^2}dx=arctan(x)$$ $$Rightarrow arctan(x)=intsum_{n=0}^{infty}(-1)^ncdot x^{2n}dx = sum_{n=0}^{infty}{(-1)^nover2n+1}cdot x^{2n+1}$$

    31. Use the answer to the previous problem to discover a series for a well-known mathematical constant $pi$.

    Solution: $${piover4}=arctan1=sum_{n=0}^{infty}{(-1)^nover2n+1}Rightarrow pi=sum_{n=0}^{infty}(-1)^ncdot{4over2n+1}$$

    Final

    1. To say that the sequence $a_n$ converges to $L$ means what? In other words, what is the definition of the statement $displaystylelim_{n oinfty}a_n=L$?

    Solution:

    For every positive real number $varepsilon > 0$ there exists an $Ninmathbf{N}$ so that whenever $n geq N$, we have $|a_n-L| < varepsilon$.

    2. To say that $displaystylesum_{k=4}^infty a_k = L$ means what? In order words, what does it mean to say that the ``value'' of a series is $L$?  

    Solution:

    The sequence of partial sums $s_n = displaystylesum_{k=4}^n a_k$ converges to $L$.

    3. Which of the following could be the initial terms of a monotonic sequence?

    A. $3,quad 1,quad -5,quad -7,quad -10,quad -6,quadldots$

    B. $3,quad -2,quad -4,quad -7,quad -13,quad -18,quadldots$

    C. $3,quad 0,quad 3,quad 2,quad -4,quad -5,quadldots$

    D. $3,quad 8,quad 4,quad 2,quad -4,quad -10,quadldots$

    E. $3,quad -2,quad -5,quad -4,quad -6,quad -8,quadldots$

    Solution:

    A monotonic sequence is a sequence which is either increasing, decreasing, non-increasing, or non-decreasing. So B is correct.

    4. Consider the sequence $b_m=-4m^2-m-2$. Is the sequence bounded above? Bounded below?

    Solution: $$-4m^2-m-2=-4(m+{1over8})^2-{31over16} leq -{31over16}$$ Bounded above, but not bounded below.

    5. Evaluate $displaystylesum_{j=3}^infty left(-displaystylefrac{3}{10} ight)^{j}$.

    Solution:

    This is geometric series, $displaystylesum_{n=k}^{infty}r^n={r^kover1-r}$, where $|r| < 1$. Thus $$sum_{j=3}^infty left(-frac{3}{10} ight)^{j}={(-{3over10})^3over1-(-{3over10})}=-frac{27}{1300}$$

    6. Does the series $displaystylesum_{n=7}^infty left( frac{n^{3.0} - 3 \, n^{2}}{n^{5.0} + 3 \, n^{3}} ight)$ converge or diverge?  

    Solution: $$frac{n^{3.0} - 3 \, n^{2}}{n^{5.0} + 3 \, n^{3}} < {n^3over n^5+3n^3} < {n^3over n^5} = {1over n^2} o ext{converge}$$ By $p$-series test and comparison test, it converges.

    7. Evaluate $displaystylesum_{m=4}^inftyfrac{20}{16 \, m^{2} + 40 \, m + 21}$.  

    Solution: $$frac{20}{16 \, m^{2} + 40 \, m + 21}={20over(4m+3)(4m+7)} =5cdot{(4m+7)-(4m+3)over(4m+3)(4m+7)}=5({1over4m+3}-{1over4m+7})$$ Thus $$sum_{m=4}^inftyfrac{20}{16 \, m^{2} + 40 \, m + 21}=5cdot({1over19}-{1over23}+{1over23}-{1over27}+cdots) ={5over19}-lim_{m oinfty}{1over4m+7}={5over19}$$

    8. Does the series $displaystylesum_{m=0}^infty left(frac{7}{5 \, m + 20} ight)$ converge or diverge?

    Solution: $$frac{7}{5m + 20} > {5over5m+20} ={1over m+4} o ext{diverge}$$ By $p$-series test and comparison test, it diverges.

    9. Suppose $(a_n)$ is a sequence involving both positive and negative numbers, and suppose that the series $displaystylesum_{n=1}^{infty}|a_n|$ converges. What can be known for certain about the series $displaystylesum_{n=1}^{infty}a_n$?

    Solution:

    Since $$0leq a_n+|a_n| < 2|a_n| o ext{converge}$$ by comparison test we have $displaystylesum_{n=1}^{infty}(a_n+|a_n|)$ converges, and hence $$displaystylesum_{n=1}^{infty}(a_n+|a_n|)-sum_{n=1}^{infty}|a_n|=displaystylesum_{n=1}^{infty}a_n$$ converges. This shows that "absolute convergence implies convergence".

    10. Does the series $displaystylesum_{i=5}^infty left( frac{left(-1 ight)^{i}}{i^{1.16}} ight)$ converge or diverge?

    Solution:

    This is $p$-series where $p=1.16 > 1$, thus it converges absolutely.

    11. Does the series $displaystylesum_{n=7}^infty left( frac{10^{n} n!}{left(2 \, n ight)^{n}} ight)$ converge or diverge?

    Solution: $$lim_{n oinfty}{a_{n+1}over a_n}=lim_{n oinfty} {10^{n+1}(n+1)!over(2n+2)^{n+1}}cdot{(2n)^nover10^ncdot n!}$$ $$=lim_{n oinfty}{10(n+1)over2n+2}cdotleft({2nover2n+2} ight)^n = {5over e} > 1$$ By ratio test, it diverges.

    12. Does the series $displaystylesum_{n=7}^infty left( left(frac{7 \, n + 3}{5 \, n + 9} ight)^{n} ight)$ converge or diverge?

    Solution: $$lim_{n oinfty}sqrt[n]{a_n}=lim_{n oinfty}{7n+3over5n+9}={7over5} > 1$$ By root test, it diverges.

    13. For which real numbers $x$ does the series $$sum_{n=1}^infty left(frac{2 \, left(-frac{4}{7} ight)^{n}cdot x^{n}}{5 \, n} ight)$$ converge?

    Solution:

    By ratio test, we have $$lim_{n oinfty}{|a_{n+1}over |a_n|}cdot|x| = lim_{n oinfty}{({4over7})^{n+1}over5(n+1)}cdot{5nover({4over7})^n}cdot|x| = {4over7}cdot|x| < 1Rightarrow -{7over4} < x < {7over4}$$ When $x=displaystyle-{7over4}$, $displaystylesum_{n=1}^{infty}{2over5n}$ diverges; When $x=displaystyle{7over4}$, $displaystylesum_{n=1}^{infty}{(-1)^ncdot2over5n}$ is an alternating series and it is convergent. Thus the interval of convergence is $displaystyle(-{7over4}, {7over4}]$.

    14. What is the radius of convergence of the series $displaystylesum_{k=4}^infty left( frac{2 \, {left(k + 1 ight)} x^{k}}{6^{k} + k + 4} ight)$? 

    Solution:

    By ratio test, we have $$lim_{k oinfty}{2(k+2)over6^{k+1}+k+1+4}cdot{6^k+k+4over2(k+1)}cdot|x| ={1over6}|x| < 1 Rightarrow -6 < x < 6$$ Thus the radius is $R=6$.

    15. Suppose $displaystylesum_{n=1}^infty b_n = frac{x}{{left(x^{2} - 1 ight)}^{2}}$. What is the expression of $b_n$?  

    Solution: $$f(x)=int{xover(x^2-1)^2}dx={1over2}int{d(x^2-1)over(x^2-1)^2} $$ $$=-{1over2}cdot{1over x^2-1}={1over2}cdot{1over1-x^2}={1over2}cdotsum_{n=0}^{infty}x^{2n}$$ Thus $$F(x)=f'(x)=sum_{n=1}^{infty}ncdot x^{2n-1}=sum_{n=1}^{infty}b_nRightarrow b_n=n x^{2n-1}$$

    16. What are the first few terms of the Taylor series for $f(x) = e^{left(e^{x} - 1 ight)} - 1$ centered around the point $a=0$?

    Solution: $$f(0)=e^{left(e^x-1 ight)}-1ig|_{x=0}=0$$ $$f'(0)=e^{left(e^x-1 ight)}cdot e^xig|_{x=0}=1$$ $$f''(0)=e^{left(e^x-1 ight)}cdot e^{2x}+e^{left(e^x-1 ight)}cdot e^xig|_{x=0}=2$$ $$f'''(0)=e^{left(e^x-1 ight)}cdot e^{3x}+2e^{left(e^x-1 ight)}cdot e^{2x}+e^{left(e^x-1 ight)}cdot e^{2x}+e^{left(e^x-1 ight)}cdot e^xig|_{x=0}=5$$ $$cdotscdotscdots$$ Thus $$e^{left(e^{x} - 1 ight)} - 1=0+x+x^2+{5over6}x^3+cdotscdots$$

    17. By finding the Taylor series around $x=1$, rewrite the polynomial $p(x)=-3x^3-x^2+x-1$ as a polynomial in $(x-1)$.

    Solution: $$p(1)=-3x^3-x^2+x-1ig|_{x=1}=-4$$ $$p'(1)=-9x^2-2x+1ig|_{x=1}=-10$$ $$p''(1)=-18x-2ig|_{x=1}=-20$$ $$p'''(1)=-18ig|_{x=1}=-18$$ Thus $$p(x)=-4-10(x-1)-10{(x-1)}^2-3{(x-1)}^3$$

    18. By considering Taylor series, evaluate $$lim_{x o 0} frac{{left(displaystylefrac{cosleft(x ight) - 1}{x} + sinleft(x ight) ight)}^{2}}{logleft(x + 1 ight) anleft(x ight)}.$$

    Solution: $$cos(x)=1-{x^2over2}+{x^4over24}+O(x^6)Rightarrow {cos(x)-1over x}=-{1over2}x+{1over24}x^3+O(x^5)$$ $$sin(x)=x-{1over6}x^3+O(x^5)$$ $$log(x+1)=x-{1over2}x^2+{1over3}x^3-{1over4}x^4+O(x^5)$$ $$ an(x)=x+{1over3}x^3+O(x^5)$$ Thus $$lim_{x o 0} frac{{left(displaystylefrac{cosleft(x ight) - 1}{x} + sinleft(x ight) ight)}^{2}}{logleft(x + 1 ight) anleft(x ight)} = lim_{x o0}{displaystyleleft({1over2}x-{1over8}x^3+O(x^5) ight)^2over displaystyle x^2-{1over2}x^3+O(x^4)}={1over4}$$

    19. Let $f(x)=cos(x^3)$. By considering the Taylor series for $f$ around 0, compute $f^{(48)}(0)$.

    Solution:

    Since $$cos(x)=sum_{n=0}^{infty}{(-1)^nover (2n)!}x^{2n}Rightarrow cos(x^3)=sum_{n=0}^{infty}{(-1)^nover (2n)!}x^{6n}$$ And hence we have $${f^{(48)}(0)over48!}={1over16!}Rightarrow f^{(48)}(0)={48!over16!}$$

    20. You may remember that $$frac{d}{dx} arctan x = frac{1}{1+x^2}.$$ By computing some terms of the (alternating!) Taylor series for arctangent, approximate $arctan left(displaystylefrac{1}{3} ight)$ to within ${1over100}$.

    Solution: $$arctan(x)=int{1over1+x^2}dx=int{1over1-(-x^2)}dx$$ $$=intsum_{n=0}^{infty}(-x^2)^ndx=intsum_{n=0}^{infty}(-1)^ncdot x^{2n}dx=sum_{n=0}^{infty}{(-1)^nover2n+1}x^{2n+1}$$ So $$arctanleft({1over3} ight)=sum_{n=0}^{infty}{(-1)^nover2n+1}cdotleft({1over3} ight)^{2n+1}$$ We hope to find a term that $|a_n| leq displaystyle{1over100}$. We can write the first few terms: $$arctanleft({1over3} ight)={1over3}-{1over81} +{1over1215}+cdots$$ Thus the first two terms are enough and the result is $displaystyle{1over3}-{1over81}={26over81}$ .


    作者:赵胤
    出处:http://www.cnblogs.com/zhaoyin/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    Atitit 华为基本法 attilax读后感
    Atitit 华为管理者内训书系 以奋斗者为本 华为公司人力资源管理纲要 attilax读后感
    Atitit 项目版本管理gitflow 与 Forking的对比与使用
    Atitit 管理的模式扁平化管理 金字塔 直线型管理 垂直管理 水平管理 矩阵式管理 网状式样管理 多头管理 双头管理
    Atitit 乌合之众读后感attilax总结 与读后感结构规范总结
    深入理解 JavaScript 异步系列(4)—— Generator
    深入理解 JavaScript 异步系列(3)—— ES6 中的 Promise
    深入理解 JavaScript 异步系列(2)—— jquery的解决方案
    深入理解 JavaScript 异步系列(1)——基础
    使用 github + jekyll 搭建个人博客
  • 原文地址:https://www.cnblogs.com/zhaoyin/p/4159939.html
Copyright © 2011-2022 走看看