zoukankan      html  css  js  c++  java
  • 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。

    PDF笔记下载(Academia.edu)

    Summary

    • Law of Large Numbers As the number of trials increases, the chance that the proportion of successes is in the range $$ppm ext{a fixed amount}$$ goes to $1$.
    • Expected value of the Binomial If a random variable $X$ has the binomial distribution with parameters $n$ and $p$, then $$E(x)=ncdot p$$

    PRACTICE

    PROBLEM 1

    In each pair of events below, pick the one that has the higher chance.

    1a)

    A: 50,000 heads in 100,000 tosses of a coin

    B: 500,000 heads in 1,000,000 tosses of a coin

    1b)

    A: In 60 rolls of a die, the number of times “six” shows up is in the range 10 plus or minus 3

    B: In 600 rolls of a die, the number of times “six” shows up is in the range 100 plus or minus 3

    1c)

    A: In 1000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%

    B: In 10,000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%

    1d)

    A: In 1000 draws by a random number generator, the percent of times “0” appears is less than 11%

    B: In 10,000 draws by a random number generator, the percent of times “0” appears is less than 11%

    Solution

    1a) A. The chance of getting exactly half heads goes down (i.e. goes to 0) with more tosses. For example:

    dbinom(x = 50000, size = 100000, prob = 0.5)
    [1] 0.002523126
    dbinom(x = 500000, size = 1000000, prob = 0.5)
    [1] 0.0007978844 

    1b) A. The chance that the number of successes falls in the range “most likely value plus or minus a fixed amount” goes down with more rolls. For example:

    sum(dbinom(x = 7:13, size = 60, prob = 1/6))
    [1] 0.7767122
    sum(dbinom(x = 97:103, size = 600, prob = 1/6))
    [1] 0.2985048

    1c) B. This follows the "Law of Large Numbers".

    sum(dbinom(x = 90:110, size = 1000, prob = 1/10))
    [1] 0.7318197
    sum(dbinom(x = 900:1100, size = 10000, prob = 1/10))
    [1] 0.9991879

    1d) B. “less than $11\%$” includes $10\%$, which is where the percent of 0’s is going as the number of draws increases. More formally, the chance that the percent of 0’s exceeds the actual probability (i.e. $0.1$) plus any fixed amount (e.g. $0.01$) gets smaller as the number of draws increases. So the probability of the complement gets larger.

    PROBLEM 2

    My friend and I gamble on a roll of a die as follows: if the die shows 1 spot or 6 spots, I give my friend $$2$. If the die show 2, 3, 4, or 5 spots, my friend gives me $$1$. Suppose we play this game 100 times. What is my expected net gain?

    Solution

    $P( ext{lose})=frac{1}{3}, P( ext{win})=frac{2}{3}$. Therefore $$E=frac{1}{3} imes(-2)+frac{2}{3} imes1=0$$

    PROBLEM 3

    A die is rolled 600 times. The “multiples of 3” are the faces with 3 spots and 6 spots. Find the expected value of:

    a) the proportion of times multiples of 3 appear

    b) the number of times multiples of 3 appear

    Solution

    3a) $$P( ext{multiples of 3 appear})=frac{2}{6}=frac{1}{3}$$

    3b) Binomial distribution, $$E=np=600 imesfrac{1}{3}=200$$

    PROBLEM 4

    If you bet on a “split” in roulette, your chance of winning is 2/38. The bets pays 17 to 1; this means that if you bet $1 on a split and win the bet, your net gain is $17; if you lose the bet, you lose your dollar and so your net gain is -$1. Suppose you place 200 bets on a split; assume your bets are independent of each other. Find your expected net gain.

    Solution

    The expected value of the proportion of the net gain is $$E_p=frac{2}{38} imes 17+frac{36}{38} imes(-1)=-frac{1}{19}$$ Hence the expected value of the net gain is $$E=200 imes(-frac{1}{19})doteq-10.52632$$ In other words you expect to come out losing about $10.53.

    EXERCISE SET 3

    PROBLEM 1

    In a roll of a die, let a "six" be the face with six spots. Consider the two events below.

    Event A: more than 16,000 sixes in 100,000 rolls

    Event B: more than 160,000 sixes in 1,000,000 rolls.

    Which probability is larger?

    Solution

    According to the Law of Large Numbers, $P(A) < P(B)$. Alternatively, we can test it using smaller examples: $$P( ext{more than 160 sixes in 1000 rolls})$$ $$=sum_{k=161}^{1000}C_{1000}^{k}cdot(frac{1}{6})^kcdot(frac{5}{6})^{1000-k}doteq0.6971976$$ And $$P( ext{more than 1600 sixes in 10000 rolls})$$ $$=sum_{k=1601}^{10000}C_{10000}^{k}cdot(frac{1}{6})^kcdot(frac{5}{6})^{10000-k}doteq0.9626252$$ R code:

    sum(dbinom(161:1000, 1000, 1/6))
    [1] 0.6971976
    sum(dbinom(1601:10000, 10000, 1/6))
    [1] 0.9626252

    PROBLEM 2

    In the bet on a “single number” at roulette, there is chance 1/38 of winning. The bet pays 35 to 1; you can take this to mean that if you win the bet, your net gain is $$35$, and if you lose the bet then you lose $$1$ (that is, your net gain is $-$1$).

    You don’t need to know any more about roulette to solve this problem, but the description given above is what would happen if you were to bet $$1$ on a single number at a Las Vegas roulette table.

    Suppose you bet repeatedly on a single number; assume that the bets are independent of each other. Find the expected value of your net gain from 38 bets.

    Solution

    $$E=38 imes(frac{1}{38} imes35+frac{37}{38} imes(-1))=38 imes(-frac{2}{38})=-2$$

    PROBLEM 3

    400 draws are made at random with replacement from 5 tickets that are marked -2, -1, 0, 1, and 2 respectively. Find the expected value of:

    3A the number of times positive numbers appear

    3B the sum of all the numbers drawn

    3C the sum of the positive numbers drawn

    Solution

    3A) $$E( ext{number of times positive numbers appear})=400 imesfrac{2}{5}=160$$

    3B) $$E( ext{sum of all the numbers drawn})=0$$

    3C) $$E( ext{sum of the positive numbers drawn})$$ $$=400 imes(1 imesfrac{1}{5}+2 imesfrac{1}{5})=400 imesfrac{3}{5}=240$$


    作者:赵胤
    出处:http://www.cnblogs.com/zhaoyin/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    backbone Model
    this指的是,调用函数的那个对象。
    原型和实例的关系
    继承之重写prototype
    11、分布式session的几种实现方式
    10、session 分布式处理
    9、session 与 cookie 区别
    8、HTTP 请求的 GET 与 POST 方式的区别
    7、说说自定义注解的场景及实现
    6、说说反射的用途及实现
  • 原文地址:https://www.cnblogs.com/zhaoyin/p/4191074.html
Copyright © 2011-2022 走看看