C. George and Job
time limit per test
1 secondmemory limit per test
256 megabytesinput
standard inputoutput
standard outputThe new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.
Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:
in such a way that the value of sum is maximal possible. Help George to cope with the task.
Input
The first line contains three integers n, m and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ 109).
Output
Print an integer in a single line — the maximum possible value of sum.
Sample test(s)
input
5 2 1 1 2 3 4 5
output
9
input
7 1 3 2 10 7 18 5 33 0
output
61
我是sb……
一道水水的dp
f[i][j]表示前j个取i段的最大价值,t[i]表示从i-m+1到i的区间和
f[i][j]=max(f[i][j-1],f[i-1][j-m]+t[j])
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<cmath> #define LL long long using namespace std; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,m,k; LL f[5010][5010]; LL a[5010],s[5010],t[5010]; int main() { n=read();m=read();k=read(); for (int i=1;i<=n;i++)a[i]=read(); for (int i=1;i<=n;i++)s[i]=s[i-1]+a[i]; for (int i=m;i<=n;i++) t[i]=s[i]-s[i-m]; for (int i=1;i<=k;i++) { for (int j=m;j<=n;j++)f[i][j]=max(f[i][j-1],f[i-1][j-m]+t[j]); } printf("%I64d",f[k][n]); }