There are n piles of pebbles on the table, the i-th pile contains ai pebbles. Your task is to paint each pebble using one of the k given colors so that for each color c and any two piles i and j the difference between the number of pebbles of color c in pile i and number of pebbles of color c in pile j is at most one.
In other words, let's say that bi, c is the number of pebbles of color c in the i-th pile. Then for any 1 ≤ c ≤ k, 1 ≤ i, j ≤ n the following condition must be satisfied |bi, c - bj, c| ≤ 1. It isn't necessary to use all k colors: if color c hasn't been used in pile i, then bi, c is considered to be zero.
The first line of the input contains positive integers n and k (1 ≤ n, k ≤ 100), separated by a space — the number of piles and the number of colors respectively.
The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 100) denoting number of pebbles in each of the piles.
If there is no way to paint the pebbles satisfying the given condition, output "NO" (without quotes) .
Otherwise in the first line output "YES" (without quotes). Then n lines should follow, the i-th of them should contain ai space-separated integers. j-th (1 ≤ j ≤ ai) of these integers should be equal to the color of the j-th pebble in the i-th pile. If there are several possible answers, you may output any of them.
4 4
1 2 3 4
YES
1
1 4
1 2 4
1 2 3 4
5 2
3 2 4 1 3
NO
5 4
3 2 4 3 5
YES
1 2 3
1 3
1 2 3 4
1 3 4
1 1 2 3 4
题意是给出一种染色方案,使得第i行有a[i]个元素,任意两行中任意两种颜色的元素个数相差不超过1
如果max-min>k,直接输出NO
否则直接每行模拟就好了
就是第i+tk的全染第i种颜色(t>=0)
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #include<queue> #include<deque> #include<set> #include<map> #include<ctime> #define LL long long #define inf 0x7ffffff #define pa pair<int,int> #define pi 3.1415926535897932384626433832795028841971 using namespace std; inline LL read() { LL x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } inline void write(LL a) { if (a<0){printf("-");a=-a;} if (a>=10)write(a/10); putchar(a%10+'0'); } inline void writeln(LL a){write(a);printf(" ");} int a[110]; int s[110]; int n,m,mx,mn=inf; int main() { n=read();m=read(); for (int i=1;i<=n;i++) { a[i]=read(); mx=max(mx,a[i]); mn=min(mn,a[i]); } if (mx-mn>m) { printf("NO "); return 0; } printf("YES "); for (int i=1;i<=n;i++) { memset(s,0,sizeof(s)); int now=1; for (int j=1;j<=a[i];j++) { s[now++]++; if (now>m)now=1; } for (int j=1;j<=m;j++) for (int k=1;k<=s[j];k++) printf("%d ",j); printf(" "); } }