zoukankan      html  css  js  c++  java
  • cf396B On Sum of Fractions

    Let's assume that

    • v(n) is the largest prime number, that does not exceed n;
    • u(n) is the smallest prime number strictly greater than n.

    Find .

    Input

    The first line contains integer t (1 ≤ t ≤ 500) — the number of testscases.

    Each of the following t lines of the input contains integer n (2 ≤ n ≤ 109).

    Output

    Print t lines: the i-th of them must contain the answer to the i-th test as an irreducible fraction "p/q", where p, q are integers, q > 0.

    Examples
    Input
    2
    2
    3
    Output
    1/6
    7/30

                    

    写写1/v(i)u(i)的前几项就能发现规律

    i    2   3   4   5

    v   2   3   3   5

    u   3   5   5   7

    如果用个f(i)表示1/v(i)u(i),那么对于一个质数x,有f(2)+f(3)+...+f(x-1)=1/2-1/x

    然后在对于一个夹在两质数a,b之间的x,显然从a到x的f值都是a/b,所以就是找到n前后最近的质数,把两分式通分一下就好了

    这里我是直接n往前往后Miller-Robin找第一个质数,不过sqrt(n)的暴力应该也能卡过去?

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<deque>
     9 #include<set>
    10 #include<map>
    11 #include<ctime>
    12 #define LL long long
    13 #define inf 0x7ffffff
    14 #define pa pair<int,int>
    15 #define mkp(a,b) make_pair(a,b)
    16 #define pi 3.1415926535897932384626433832795028841971
    17 using namespace std;
    18 inline LL read()
    19 {
    20     LL x=0,f=1;char ch=getchar();
    21     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    22     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    23     return x*f;
    24 }
    25 LL mul(LL x,LL n,LL MOD)
    26 {
    27     LL res=x*n-(LL)((long double) x*n/MOD+0.5)*MOD;
    28     while (res<0)res+=MOD;
    29     while (res>=MOD)res-=MOD;
    30     return res;
    31 }
    32 LL qpow(LL x,LL n,LL MOD)
    33 {
    34     x=(x%MOD+MOD)%MOD;
    35     LL p=x,con=1;
    36     while (n)
    37     {
    38         if (n&1)con=mul(con,p,MOD);
    39         p=mul(p,p,MOD);
    40         n>>=1;
    41     }
    42     return con;
    43 }
    44 bool witness(LL a,LL b)
    45 {
    46     if (a==b)return true;
    47     LL s=b-1;
    48     int t=0;
    49     while (!(s&1))s>>=1,t++;
    50     LL x=qpow(a,s,b);
    51     if (x==1)return 1;
    52     while (t--)
    53     {
    54         if (x==b-1)return true;
    55         x=mul(x,x,b);
    56         if (x==1)return false;
    57     }
    58     return false;
    59 }
    60 bool isprime(LL x)
    61 {
    62     if (x==0||x==1)return false;
    63     static int p[]={2,3,5,7,11,13,17,19,23,29,31};
    64     for (int i=0;i<=10;i++)
    65         if (!witness(p[i],x))return false;
    66     return true;
    67 }
    68 inline LL gcd(LL a,LL b)
    69 {
    70     if (a<b)swap(a,b);
    71     return b==0?a:gcd(b,a%b);
    72 }
    73 int main()
    74 {
    75     int T=read();
    76     while (T--)
    77     {
    78         LL x=read(),y,z,t,ans1,ans2;
    79         for (y=x;y>=2;y--)if (isprime(y))break;
    80         for (z=x+1;z<=1e9+7;z++)if (isprime(z))break;
    81         //ans=1/2-1/y+(x-y+1)*y/z
    82         ans1=y*z-2*z+2*x-2*y+2;ans2=2*y*z;
    83         t=gcd(ans1,ans2);ans1/=t;ans2/=t;
    84         printf("%lld/%lld
    ",ans1,ans2);
    85     }
    86 }
    cf396B
  • 相关阅读:
    观察者模式
    模版方法
    event
    设计模式之观察者模式
    BOM
    javascript基础语法&4
    Document Object Model
    javascript基础语法&3
    javaScript基础语法&1
    sublimeText3安装
  • 原文地址:https://www.cnblogs.com/zhber/p/7283426.html
Copyright © 2011-2022 走看看