zoukankan      html  css  js  c++  java
  • [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2 k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    给a,b,c,k,求最小的x,使得a+c*x==b%(2^k)

    即c*x+(2^k)*y==(b-a+2^k)%(2^k)

    直接上exgcd,然后调一调x得到最小解即可

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #define LL long long
     5 using namespace std;
     6 inline LL read()
     7 {
     8     LL x=0,f=1;char ch=getchar();
     9     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    10     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    11     return x*f;
    12 }
    13 LL A,B,C,D,k;
    14 inline LL exgcd(LL a,LL b,LL &x,LL &y)
    15 {
    16     if(!b){x=1;y=0;return a;}
    17     LL gcd=exgcd(b,a%b,x,y);
    18     LL t=x;x=y;y=t-a/b*y;
    19     return gcd;
    20 }
    21 inline LL calc(LL a,LL b,LL c)//Ax==B(mod C)
    22 {
    23     LL x,y;
    24     LL tt=exgcd(a,c,x,y);
    25     if (b%tt!=0)return -1;
    26     x=x*b/tt;
    27     LL ss=c/tt;
    28     x=(x%ss+ss)%ss;
    29     return x;
    30 }
    31 int main()
    32 {
    33     while (~scanf("%lld%lld%lld%lld",&A,&B,&C,&k)&&(A+B+C+k))
    34     {
    35         D=1ll<<k;
    36         if (B==A){puts("0");continue;}
    37         B=(B-A+D)%D;
    38         LL ans=calc(C,B,D);
    39         if (ans==-1)puts("FOREVER");
    40         else printf("%lld
    ",ans);
    41     }
    42 }
    poj 2115
  • 相关阅读:
    Dubbo与Eureka
    对称加密与非对称加密
    [转] SpringBoot2.0集成WebSocket,实现后台向前端推送信息
    [转] Druid简介(Spring Boot + Mybatis + Druid数据源【自己定制】)
    [转] rsync+inotify实现文件实时同步
    [转] windows server 几大实时同步软件比较
    [转] Springboot 整合RabbitMq ,用心看完这一篇就够了
    [转] Windows环境下部署RabbitMQ
    [转] 分布式缓存 Redis 集群搭建
    [转] 吞吐量(TPS)、QPS、并发数、响应时间(RT)概念
  • 原文地址:https://www.cnblogs.com/zhber/p/7285512.html
Copyright © 2011-2022 走看看