zoukankan      html  css  js  c++  java
  • Codeforces 474 C. Captain Marmot


    4*4*4*4暴力+点的旋转+推断正方型

    C. Captain Marmot
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Captain Marmot wants to prepare a huge and important battle against his enemy, Captain Snake. For this battle he has n regiments, each consisting of 4 moles.

    Initially, each mole i (1 ≤ i ≤ 4n) is placed at some position (xi, yi) in the Cartesian plane. Captain Marmot wants to move some moles to make the regiments compact, if it's possible.

    Each mole i has a home placed at the position (ai, bi). Moving this mole one time means rotating his position point (xi, yi) 90 degrees counter-clockwise around it's home point (ai, bi).

    A regiment is compact only if the position points of the 4 moles form a square with non-zero area.

    Help Captain Marmot to find out for each regiment the minimal number of moves required to make that regiment compact, if it's possible.

    Input

    The first line contains one integer n (1 ≤ n ≤ 100), the number of regiments.

    The next 4n lines contain 4 integers xiyiaibi ( - 104 ≤ xi, yi, ai, bi ≤ 104).

    Output

    Print n lines to the standard output. If the regiment i can be made compact, the i-th line should contain one integer, the minimal number of required moves. Otherwise, on the i-th line print "-1" (without quotes).

    Sample test(s)
    input
    4
    1 1 0 0
    -1 1 0 0
    -1 1 0 0
    1 -1 0 0
    1 1 0 0
    -2 1 0 0
    -1 1 0 0
    1 -1 0 0
    1 1 0 0
    -1 1 0 0
    -1 1 0 0
    -1 1 0 0
    2 2 0 1
    -1 0 0 -2
    3 0 0 -2
    -1 1 -2 0
    
    output
    1
    -1
    3
    3
    
    Note

    In the first regiment we can move once the second or the third mole.

    We can't make the second regiment compact.

    In the third regiment, from the last 3 moles we can move once one and twice another one.

    In the fourth regiment, we can move twice the first mole and once the third mole.



    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    const double pi=3.1415926/2.;
    const int INF=0x3f3f3f3f;
    
    int n;
    struct PT
    {
        double x,y,hx,hy;
    }pt[10][10];
    
    struct Point
    {
        int x,y;
    }A,B,C,D;
    
    int isSQRT(Point a,Point b,Point c,Point d)
    {
        int i,j,sumt=0,sumo=0;
        double px[10],py[10];//代表6条边的 向量
        double y[10];
        memset(y,0,sizeof(y));
        px[1]=a.x-b.x;
        py[1]=a.y-b.y;
        px[2]=a.x-c.x;
        py[2]=a.y-c.y;
        px[3]=a.x-d.x;
        py[3]=a.y-d.y;
        px[4]=b.x-c.x;
        py[4]=b.y-c.y;
        px[5]=b.x-d.x;
        py[5]=b.y-d.y;
        px[6]=c.x-d.x;
        py[6]=c.y-d.y;
        for(i=1; i<=6; i++)
        {
            for(j=i+1; j<=6; j++)
                if((px[i]*px[j]+py[i]*py[j])==0)//推断垂直
                {
                    y[i]++;
                    y[j]++;
                }
        }
        for(i=1; i<=6; i++)
        {
            if(y[i]==2)
                sumt++;//有2条边 与其垂直的个数
            if(y[i]==1)
                sumo++;//有1条边 与其垂直的个数
        }
        if(sumt==4&&sumo==2)
            return 1;// 是正方形
        if(sumt==4)
            return 0;//是 矩形
        return 0;//都不是
    }
    
    int main()
    {
        scanf("%d",&n);
        while(n--)
        {
            for(int i=0;i<4;i++)
            {
                double a,b,c,d;
                scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
                pt[i][0].x=a,pt[i][0].y=b;
                pt[i][0].hx=c,pt[i][0].hy=d;
                ///....
                for(int j=1;j<4;j++)
                {
                    pt[i][j].x=pt[i][j-1].x;
                    pt[i][j].y=pt[i][j-1].y;
                    pt[i][j].hx=pt[i][j-1].hx;
                    pt[i][j].hy=pt[i][j-1].hy;
                    ///x0= (x - rx0)*cos(a) - (y - ry0)*sin(a)  + rx0 ;
                    ///y0= (x - rx0)*sin(a) + (y - ry0)*cos(a) + ry0 ;
                    pt[i][j].x=(pt[i][j-1].x-pt[i][j-1].hx)*0-(pt[i][j-1].y-pt[i][j-1].hy)*1+pt[i][j-1].hx;
                    pt[i][j].y=(pt[i][j-1].x-pt[i][j-1].hx)*1+(pt[i][j-1].y-pt[i][j-1].hy)*0+pt[i][j-1].hy;
    
                }
            }
    
            int ans=INF;
            for(int i1=0;i1<4;i1++)
            {
                for(int i2=0;i2<4;i2++)
                {
                    for(int i3=0;i3<4;i3++)
                    {
                        for(int i4=0;i4<4;i4++)
                        {
                            int temp=i1+i2+i3+i4;
                            if(temp>ans) continue;
                            A.x=pt[0][i1].x;A.y=pt[0][i1].y;
                             B.x=pt[1][i2].x;B.y=pt[1][i2].y;
                              C.x=pt[2][i3].x;C.y=pt[2][i3].y;
                               D.x=pt[3][i4].x;D.y=pt[3][i4].y;
                            if(isSQRT(A,B,C,D)==true)
                                ans=min(ans,temp);
                        }
                    }
                }
            }
    
            if(ans==INF) ans=-1;
            printf("%d
    ",ans);
        }
        return 0;
    }
    



  • 相关阅读:
    1877. 数组中最大数对和的最小值 力扣(中等) 简单题,sort+贪心
    1838. 最高频元素的频数 力扣(中等) 尺取法 是我做不出来的题
    面试题 08.09. 括号 力扣(中等) 是我想不出来的回溯
    js删除数组里的某个元素
    Yiwen with Sqc 题解(dp)
    Link with EQ 题解(dp)
    Robots 题解(暴力bitset)
    P3232 [HNOI2013]游走 题解(图上随机游走问题 高斯消元
    怀旧游戏 题解(逆向bfs打表博弈)
    F. The Number of Subpermutations 题解(异或hash维护全排列)
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/6937294.html
Copyright © 2011-2022 走看看