zoukankan      html  css  js  c++  java
  • HDU 5072 Coprime (单色三角形+容斥原理)

    题目链接:Coprime


    题面:

    Coprime

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1181    Accepted Submission(s): 471


    Problem Description
    There are n people standing in a line. Each of them has a unique id number.

    Now the Ragnarok is coming. We should choose 3 people to defend the evil. As a group, the 3 people should be able to communicate. They are able to communicate if and only if their id numbers are pairwise coprime or pairwise not coprime. In other words, if their id numbers are a, b, c, then they can communicate if and only if [(a, b) = (b, c) = (a, c) = 1] or [(a, b) ≠ 1 and (a, c) ≠ 1 and (b, c) ≠ 1], where (x, y) denotes the greatest common divisor of x and y.

    We want to know how many 3-people-groups can be chosen from the n people.
     

    Input
    The first line contains an integer T (T ≤ 5), denoting the number of the test cases.

    For each test case, the first line contains an integer n(3 ≤ n ≤ 105), denoting the number of people. The next line contains n distinct integers a1, a2, . . . , an(1 ≤ ai ≤ 105) separated by a single space, where ai stands for the id number of the i-th person.
     

    Output
    For each test case, output the answer in a line.
     

    Sample Input
    1 5 1 3 9 10 2
     

    Sample Output
    4
     

    Source
    2014 Asia AnShan Regional Contest

    解题:
        题意求找出三数互质或都不互质的组数,直接肯定不行。

    此题原型为单色三角形,结果为C(3,n)-res,当中res为每一个与每一个数互质和不互质数量的乘积的累加。求与每一个数不互质的数量,用到了容斥原理。看似简单的原理应用却这么广泛,假设没做过容斥原理的题目,能够先试一下HDU 1796。
    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    bool status[100010];
    int factor[100010][8];
    int store[100010],cnt[100010];
    long long ans[100010],res;
    int one_amount[300];
    int refl[300][8];
    int cal[8];
    void prep()
    {
        memset(refl,0,sizeof(refl));
        int cont=0,temp;
       for(int i=0;i<256;i++)
       {
           temp=i;
           one_amount[i]=cont=0;
           while(temp)
           {
             if(temp%2)
             {
                 one_amount[i]++;
                 refl[i][cont]=1;
             }
             cont++;
             temp/=2;
           }
       }
    }
    bool is_prime(int a)
    {
    	if(a<=3)return true;
    	int x=sqrt(1.0*a);
    	for(int i=2;i<=x;i++)
    	{
    		if(a%i==0)
    			return false;
    	}
    	return true;
    }
    long long C(int x,int y)
    {
    	long long res=1;
    	for(int i=1;i<=x;i++)
    	{
    		res=res*(y-i+1)/i;
    	}
    	return res;
    }
    int main()
    {
    	int t,n,p,tmp;
    	long long temp;
    	scanf("%d",&t);
    	prep();
    	while(t--)
    	{
    		res=0;
    		memset(status,0,sizeof(status));
    		memset(factor,0,sizeof(factor));
    		memset(cnt,0,sizeof(cnt));
    		memset(ans,0,sizeof(ans));
    		scanf("%d",&n);
    		for(int i=0;i<n;i++)
    			scanf("%d",&store[i]);
    		for(int i=0;i<n;i++)
    			status[store[i]]=1;
            for(int i=2;i<=100000;i++)
    		{
    	       if(is_prime(i))
    		   {
    			   for(int j=i;j<=100000;j+=i)
    			   {
    				   if(status[j])
    				   {
    					   cnt[i]++;
    				   }
    				   p=0;
    				   while(factor[j][p])
    				   {
    					   p++;
    				   }
    				   factor[j][p]=i;
    			   }
    		   }
    		   else
    		   {
                 for(int j=i;j<=100000;j+=i)
    			   {
    				   if(status[j])
    				   {
    					   cnt[i]++;
    				   }
    			   }
    
    		   }
    		}
            for(int i=0;i<n;i++)
    		{
               tmp=store[i];
               p=0;
    		   while(factor[tmp][p])
    		   {
    			   cal[p]=factor[tmp][p];
    			   p++;
    		   }
    		   if(p==0)
    		   {
    			   ans[i]=0;
    			   continue;
    		   }
               tmp=1<<p;
    		   for(int j=1;j<tmp;j++)
               {
                  temp=1;
                  for(int k=0;k<p;k++)
                  {
                      if(refl[j][k])
                     {
                        temp=temp*cal[k];
                     }
    			   }
                  if(one_amount[j]%2)
                  ans[i]+=cnt[temp];
                  else
                  ans[i]-=cnt[temp];
              }
    		   ans[i]-=1;
    		}
    		for(int i=0;i<n;i++)
    		{
    			res+=(ans[i]*(n-ans[i]-1));
    		}
    		res/=2;
    		printf("%I64d
    ",C(3,n)-res);
    	}
    	return 0;
    }

    总结:
    用好容斥原理的关键在于,搞清楚集合的交的含义。


     

  • 相关阅读:
    PHP概率算法---砸金蛋示例
    onethink----网站配置信息调用!
    ajax解决跨域方法(适用于自己写接口解决跨域)
    JavaScript获取地址栏的参数!
    Atitit. null错误的设计 使用Optional来处理null
    Atitit.常用的gc算法
    Atitit.java expression fsm 表达式分词fsm引擎
    Atitit.安全性方案规划设计4gm  v1 q928
    Atitit.安全性方案规划设计4gm  v1 q928
    Atitit.java expression fsm 表达式分词fsm引擎
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/7381113.html
Copyright © 2011-2022 走看看