Spark源代码阅读笔记之DiskStore
BlockManager底层通过BlockStore来对数据进行实际的存储。BlockStore是一个抽象类,有三种实现:DiskStore(磁盘级别的持久化)、MemoryStore(内存级别的持久化)和TachyonStore(Tachyon内存分布式文件系统级别的持久化)。
DiskStore通过DiskBlockManager来实现Block和相应磁盘文件的映射关系,从而将Block存储到磁盘的文件里。DiskBlockManager依据YARN_LOCAL_DIRS或LOCAL_DIRS(yarn模式),SPARK_LOCAL_DIRS或spark.local.dir(其它模式,默认值System.getProperty(“java.io.tmpdir“))配置的本地根文件夹(可能有多个,以逗号分隔)来生成DiskStore存放Block的根文件夹(与配置的根文件夹相应,也有可能有多个):…/blockmgr-UUID.randomUUID.toString(yarn模式)或…/spark-UUID.randomUUID.toString/blockmgr-UUID.randomUUID.toString(其它模式)。
同一时候DiskBlockManager会为每一个根文件夹生成conf.getInt(“spark.diskStore.subDirectories“, 64)个子文件夹用来存放Block相应的文件。每一个Block会依据它的name哈希到相应的子文件夹,然后以Block的name为文件名称来生成文件存储。
Creates and maintains the logical mapping between logical blocks and physical on-disk locations. By default, one block is mapped to one file with a name given by its BlockId. However, it is also possible to have a block map to only a segment of a file, by calling mapBlockToFileSegment().
Block files are hashed among the directories listed in spark.local.dir (or in SPARK_LOCAL_DIRS, if it’s set).
DiskBlockManager属性
blockManager:BlockManager
subDirsPerLocalDir:Int = blockManager.conf.getInt(“spark.diskStore.subDirectories“, 64)
每一个本地根文件夹生成子文件夹的个数,生成子文件夹是为了避免生成过多的索引节点Create one local directory for each path mentioned in spark.local.dir; then, inside this directory, create multiple subdirectories that we will hash files into, in order to avoid having really large inodes at the top level.
localDirs:Array[File]
存放Block相应的File的本地根文件夹,依据依据YARN_LOCAL_DIRS或LOCAL_DIRS(yarn模式), SPARK_LOCAL_DIRS或spark.local.dir(其它模式。默认值System.getProperty(“java.io.tmpdir”))配置生成subDirs:Array[File](localDirs.lenght)(subDirsPerLocalDir)
存放全部子文件夹的二维数组
DiskBlockManager方法
- getFile(filename: String): File
依据文件名称,取得文件。该方法先将filename哈希到相应的子文件夹(subDirs[hash % localDirs.length][(hash / localDirs.length) % subDirsPerLocalDir])。然后推断子文件夹是否存在,若不存在则生成
/** Looks up a file by hashing it into one of our local subdirectories. */
def getFile(filename: String): File = {
// Figure out which local directory it hashes to, and which subdirectory in that
val hash = Utils.nonNegativeHash(filename)
val dirId = hash % localDirs.length
val subDirId = (hash / localDirs.length) % subDirsPerLocalDir
// Create the subdirectory if it doesn't already exist
var subDir = subDirs(dirId)(subDirId)
if (subDir == null) {
subDir = subDirs(dirId).synchronized {
val old = subDirs(dirId)(subDirId)
if (old != null) {
old
} else {
val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
if (!newDir.exists() && !newDir.mkdir()) {
throw new IOException(s"Failed to create local dir in $newDir.")
}
subDirs(dirId)(subDirId) = newDir
newDir
}
}
}
new File(subDir, filename)
}
getFile(blockId: BlockId): File = getFile(blockId.name)
依据BlockId取得相应的FilecontainsBlock(blockId: BlockId): Boolean = getFile(blockId.name).exists()
推断BlockId是否有存储在该本地磁盘getAllFiles(): Seq[File]
取得存储的全部的文件/** List all the files currently stored on disk by the disk manager. */ def getAllFiles(): Seq[File] = { // Get all the files inside the array of array of directories subDirs.flatten.filter(_ != null).flatMap { dir => val files = dir.listFiles() if (files != null) files else Seq.empty } }
getAllBlocks(): Seq[BlockId] = getAllFiles().map(f => BlockId(f.getName))
取得存储的全部Block的BlockIdcreateTempLocalBlock(): (TempLocalBlockId, File)
创建本地暂时文件
/** Produces a unique block id and File suitable for storing local intermediate results. */
def createTempLocalBlock(): (TempLocalBlockId, File) = {
var blockId = new TempLocalBlockId(UUID.randomUUID())
while (getFile(blockId).exists()) {
blockId = new TempLocalBlockId(UUID.randomUUID())
}
(blockId, getFile(blockId))
}
- createTempShuffleBlock(): (TempShuffleBlockId, File)
创建sort shuffle使用的暂时文件
Produces a unique block id and File suitable for storing shuffled intermediate results. “
def createTempShuffleBlock(): (TempShuffleBlockId, File) = {
var blockId = new TempShuffleBlockId(UUID.randomUUID())
while (getFile(blockId).exists()) {
blockId = new TempShuffleBlockId(UUID.randomUUID())
}
(blockId, getFile(blockId))
}
**DiskStore**属性
blockManager: BlockManager
diskManager: DiskBlockManager
minMemoryMapBytes:Long= blockManager.conf.getLong(
“spark.storage.memoryMapThreshold“, 2 * 1024L * 1024L)
对文件进行内存映射的阈值,即当文件大于该值时getBytes方法对文件进行内存映射,而不是直接将该文件的内容读取到字节缓存区。
DiskStore方法
- def putBytes(blockId: BlockId, _bytes: ByteBuffer, level: StorageLevel): PutResult
将BlockId相应的字节缓存存储到磁盘
override def putBytes(blockId: BlockId, _bytes: ByteBuffer, level: StorageLevel): PutResult = {
// So that we do not modify the input offsets !
// duplicate does not copy buffer, so inexpensive
val bytes = _bytes.duplicate()
logDebug(s"Attempting to put block $blockId")
val startTime = System.currentTimeMillis
val file = diskManager.getFile(blockId)
val channel = new FileOutputStream(file).getChannel
while (bytes.remaining > 0) {
channel.write(bytes)
}
channel.close()
val finishTime = System.currentTimeMillis
logDebug("Block %s stored as %s file on disk in %d ms".format(
file.getName, Utils.bytesToString(bytes.limit), finishTime - startTime))
PutResult(bytes.limit(), Right(bytes.duplicate()))
}
- putIterator(blockId: BlockId, values: Iterator[Any],level: StorageLevel,returnValues: Boolean): PutResult
将BlockId相应的Iterator数据存储到磁盘,该方法先将Iterator序列化,然后存储到相应的文件。
override def putIterator(
blockId: BlockId,
values: Iterator[Any],
level: StorageLevel,
returnValues: Boolean): PutResult = {
logDebug(s"Attempting to write values for block $blockId")
val startTime = System.currentTimeMillis
val file = diskManager.getFile(blockId)
val outputStream = new FileOutputStream(file)
try {
try {
blockManager.dataSerializeStream(blockId, outputStream, values)
} finally {
// Close outputStream here because it should be closed before file is deleted.
outputStream.close()
}
} catch {
case e: Throwable =>
if (file.exists()) {
file.delete()
}
throw e
}
val length = file.length
val timeTaken = System.currentTimeMillis - startTime
logDebug("Block %s stored as %s file on disk in %d ms".format(
file.getName, Utils.bytesToString(length), timeTaken))
if (returnValues) {
// Return a byte buffer for the contents of the file
val buffer = getBytes(blockId).get
PutResult(length, Right(buffer))
} else {
PutResult(length, null)
}
}
- putArray(blockId: BlockId,values: Array[Any],level: StorageLevel,returnValues: Boolean): PutResult
将BlockId相应的Array数据存储到磁盘,该方法先将Array序列化,然后存储到相应的文件。
override def putArray(
blockId: BlockId,
values: Array[Any],
level: StorageLevel,
returnValues: Boolean): PutResult = {
putIterator(blockId, values.toIterator, level, returnValues)
}
- getBytes(file: File, offset: Long, length: Long): Option[ByteBuffer]
底层方法,读取文件里偏移为offset。长度为length的内容。该方法会推断length是否大于minMemoryMapBytes。若大于。则做内存映射,否则直接读取到字节缓存中。
private def getBytes(file: File, offset: Long, length: Long): Option[ByteBuffer] = {
val channel = new RandomAccessFile(file, "r").getChannel
try {
// For small files, directly read rather than memory map
if (length < minMemoryMapBytes) {
val buf = ByteBuffer.allocate(length.toInt)
channel.position(offset)
while (buf.remaining() != 0) {
if (channel.read(buf) == -1) {
throw new IOException("Reached EOF before filling buffer
" +
s"offset=$offset
file=${file.getAbsolutePath}
buf.remaining=${buf.remaining}")
}
}
buf.flip()
Some(buf)
} else {
Some(channel.map(MapMode.READ_ONLY, offset, length))
}
} finally {
channel.close()
}
}
- getBytes(blockId: BlockId): Option[ByteBuffer]
读取存储在磁盘中与BlockId相应的内容。
override def getBytes(blockId: BlockId): Option[ByteBuffer] = {
val file = diskManager.getFile(blockId.name)
getBytes(file, 0, file.length)
}
getBytes(segment: FileSegment): Option[ByteBuffer] = getBytes(segment.file, segment.offset, segment.length)
依据FileSegment读取内容,当中 FileSegment存放文件和要读取数据的偏移和大小:FileSegment(val file: File, val offset: Long, val length: Long)getValues(blockId: BlockId): Option[Iterator[Any]]
读取BlockId相应的内容,并反序列化为Iterator。
override def getValues(blockId: BlockId): Option[Iterator[Any]] = {
getBytes(blockId).map(buffer => blockManager.dataDeserialize(blockId, buffer))
}
- getValues(blockId: BlockId, serializer: Serializer): Option[Iterator[Any]]
读取BlockId相应的内容。并依据自己定义的Serializer反序列化为Iterator。
/**
- A version of getValues that allows a custom serializer. This is used as part of the
- shuffle short-circuit code.
*/
def getValues(blockId: BlockId, serializer: Serializer): Option[Iterator[Any]] = {
// TODO: Should bypass getBytes and use a stream based implementation, so that
// we won't use a lot of memory during e.g. external sort merge.
getBytes(blockId).map(bytes => blockManager.dataDeserialize(blockId, bytes, serializer))
}
getSize(blockId: BlockId): Long = diskManager.getFile(blockId.name).length
得到存储在该本地磁盘的BlockId相应Block的大小。remove(blockId: BlockId): Boolean
删除存储的BlockId相应的Block。
override def remove(blockId: BlockId): Boolean = {
val file = diskManager.getFile(blockId.name)
// If consolidation mode is used With HashShuffleMananger, the physical filename for the block
// is different from blockId.name. So the file returns here will not be exist, thus we avoid to
// delete the whole consolidated file by mistake.
if (file.exists()) {
file.delete()
} else {
false
}
}
- contains(blockId: BlockId): Boolean
推断是否存储BlockId相应的Block。
override def contains(blockId: BlockId): Boolean = {
val file = diskManager.getFile(blockId.name)
file.exists()
}