zoukankan      html  css  js  c++  java
  • Matlab 奇异值、奇异矩阵、svd函数

    奇异值:
    奇异值分解法是线性代数中一种重要的矩阵分解法,在信号处理、统计学等领域有重要应用。
    定义:设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。如果把A‘*A的特征值记为λi(A‘*A),则σi(A)=sqrt(λi(A’*A))。
    奇异矩阵: 
      奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。
    奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。如果A为奇异矩阵,则AX=0有非零解或无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解。
    svd设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。
    奇异值分解:
    奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系 。
    定理和推论定理:
    设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。
    说明:1、 奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。
    2、 奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。
    奇异值分解函数 svd
    格式: s = svd (A) %返回矩阵A的奇异值向量
         [U,S,V] = svd(A) %返回一个与A同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列
        [U1,S1,V1]=svd(X,0) %产生A的“经济型”分解,只计算出矩阵U的前n列和n×n阶的S。说明:1.“经济型”分解节省存储空间。2. U*S*V'=U1*S1*V1'。
    [1]矩阵近似值奇异值分解在统计中的主要应用为主成分分析(PCA),它是一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。正交矩阵正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。
    注意正交矩阵的定义:n阶‘实矩阵’ A称为正交矩阵,如果:A×A′=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。) 若A为正交阵,则下列诸条件是等价的:
    1) A 是正交矩阵
    2) A×A′=E(E为单位矩阵)
    3) A′是正交矩阵
    4) A的各行是单位向量且两两正交
    5) A的各列是单位向量且两两正交
    6) (Ax,Ay)=(x,y) x,y∈R

     
  • 相关阅读:
    最痛心以前做的笔记 Python 练习实例1
    JavaScript 简介
    Javascript简明教程(5) 条件判断
    Javascript简明教程(3) 数组
    Javascript简明教程(2) 字符串
    《SaltStack技术入门与实践》—— Mine
    《SaltStack技术入门与实践》—— Renderer组件
    【SaltStack官方版】—— Events&Reactor系统—BEACONS
    【SaltStack官方版】—— Events&Reactor系统—EVENT SYSTEM
    《SaltStack技术入门与实践》—— Event和Reactor系统
  • 原文地址:https://www.cnblogs.com/zhedingbingqin/p/10012955.html
Copyright © 2011-2022 走看看