zoukankan      html  css  js  c++  java
  • UVA796

    In a computer network a link L, which interconnects two servers, is considered critical if there are at
    least two servers A and B such that all network interconnection paths between A and B pass through L.
    Removing a critical link generates two disjoint sub–networks such that any two servers of a sub–network
    are interconnected. For example, the network shown in figure 1 has three critical links that are marked
    bold: 0 -1, 3 - 4 and 6 - 7.
    Figure 1: Critical links
    It is known that:
    1. the connection links are bi–directional;
    2. a server is not directly connected to itself;
    3. two servers are interconnected if they are directly connected or if they are interconnected with
    the same server;
    4. the network can have stand–alone sub–networks.
    Write a program that finds all critical links of a given computer network.
    Input
    The program reads sets of data from a text file. Each data set specifies the structure of a network and
    has the format:
    no of servers
    server0 (no of direct connections) connected server . . . connected server
    . . .
    serverno of servers (no of direct connections) connected server . . . connected server
    The first line contains a positive integer no of servers(possibly 0) which is the number of network
    servers. The next no of servers lines, one for each server in the network, are randomly ordered and
    show the way servers are connected. The line corresponding to serverk, 0 ≤ k ≤ no of servers − 1,
    specifies the number of direct connections of serverk and the servers which are directly connected to
    serverk. Servers are represented by integers from 0 to no of servers − 1. Input data are correct. The
    first data set from sample input below corresponds to the network in figure 1, while the second data
    set specifies an empty network.
    Output
    The result of the program is on standard output. For each data set the program prints the number of
    critical links and the critical links, one link per line, starting from the beginning of the line, as shown
    in the sample output below. The links are listed in ascending order according to their first element.
    The output for the data set is followed by an empty line.
    Sample Input
    8
    0 (1) 1
    1 (3) 2 0 3
    2 (2) 1 3
    3 (3) 1 2 4
    4 (1) 3
    7 (1) 6
    6 (1) 7
    5 (0)
    0
    Sample Output
    3 critical links
    0 - 1
    3 - 4
    6 - 7


    0 critical links

     

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737

     

    给你一个图,让你求这个图中哪些是桥,并输出;

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    #include <vector>
    using namespace std;
    typedef long long LL;
    #define N 10005
    #define met(a, b) memset(a, b, sizeof(a))
    
    int dfn[N], low[N], Time, ans;
    int n, f[N];
    vector<vector<int> >G;
    
    struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }a[N];
    
    void Init()
    {
        met(dfn, 0);
        met(low, 0);
        met(f, 0);
        met(a, 0);
        G.clear();
        G.resize(n+3);
        Time = 0;
    }
    
    void Tarjan(int u, int fa)
    {
        low[u] = dfn[u] = ++Time;
        f[u] = fa;
        int len = G[u].size(), v;
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
            if(!dfn[v])
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
    
                if(low[v] > dfn[u])///判断是否是桥;
                {
                    a[ans].x = u;
                    a[ans].y = v;
                    if(a[ans].x>a[ans].y)swap(a[ans].x, a[ans].y);
                    ans++;
                }
            }
            else if(fa != v)
                low[u] = min(dfn[v], low[u]);
        }
    }
    
    
    int main()
    {
        while(scanf("%d", &n) != EOF)
        {
            Init();
    
            int u, v, m;
    
            for(int i=0; i<n; i++)
            {
                scanf("%d (%d)", &u, &m);
                for(int j=0; j<m; j++)
                {
                    scanf("%d", &v);
                    G[u].push_back(v);
                    G[v].push_back(u);
                }
            }
            ans = 0;
    
            for(int i=0; i<n; i++)
                if(!dfn[i])
                    Tarjan(i, -1);
    
            sort(a, a+ans);
    
            printf("%d critical links
    ", ans);
            for(int i=0; i<ans; i++)
                printf("%d - %d
    ", a[i].x, a[i].y);
            printf("
    ");
        }
        return 0;
    }
    View Code
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    #include <vector>
    using namespace std;
    typedef long long LL;
    #define N 10005
    #define met(a, b) memset(a, b, sizeof(a))
    
    int dfn[N], low[N], Time;
    int n, f[N];
    vector<vector<int> >G;
    
    struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }a[N];
    
    void Init()
    {
        met(dfn, 0);
        met(low, 0);
        met(f, 0);
        met(a, 0);
        G.clear();
        G.resize(n+3);
        Time = 0;
    }
    
    void Tarjan(int u, int fa)
    {
        low[u] = dfn[u] = ++Time;
        f[u] = fa;
        int len = G[u].size(), v;
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
            if(!dfn[v])
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
            }
            else if(fa != v)
                low[u] = min(dfn[v], low[u]);
        }
    }
    
    
    int main()
    {
        while(scanf("%d", &n) != EOF)
        {
            Init();
    
            int u, v, m;
    
            for(int i=0; i<n; i++)
            {
                scanf("%d (%d)", &u, &m);
                for(int j=0; j<m; j++)
                {
                    scanf("%d", &v);
                    G[u].push_back(v);
                    G[v].push_back(u);
                }
            }
    
            for(int i=0; i<n; i++)
                if(!dfn[i])
                    Tarjan(i, -1);
    
            int ans = 0;
    
            for(int i=0; i<n; i++)
            {
                v = f[i];
                if(v!=-1 && low[i]>dfn[v])
                {
                    a[ans].x = i;
                    a[ans].y = v;
                    if(a[ans].x>a[ans].y)swap(a[ans].x, a[ans].y);
                    ans++;
                }
            }
            sort(a, a+ans);
    
            printf("%d critical links
    ", ans);
            for(int i=0; i<ans; i++)
                printf("%d - %d
    ", a[i].x, a[i].y);
            printf("
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    mybatis公用代码抽取到单独的mapper.xml文件
    mysql与oracle常用函数及数据类型对比00持续补充
    人民币在岸 离岸 中间价的含义与关系
    mysql hang and srv_error_monitor_thread using 100% cpu(已解决)
    long和BigDecimal引发的管理思考
    mybatis 3的TypeHandler深入解析(及null值的处理)
    mysql 5.7.17发布
    rabbitmq connection/channel/consumer/queue的数量关系详细分析
    rabbitMQ publish丢包分析
    INFO: task java:27465 blocked for more than 120 seconds不一定是cache太大的问题
  • 原文地址:https://www.cnblogs.com/zhengguiping--9876/p/5499480.html
Copyright © 2011-2022 走看看