zoukankan      html  css  js  c++  java
  • UVA796

    In a computer network a link L, which interconnects two servers, is considered critical if there are at
    least two servers A and B such that all network interconnection paths between A and B pass through L.
    Removing a critical link generates two disjoint sub–networks such that any two servers of a sub–network
    are interconnected. For example, the network shown in figure 1 has three critical links that are marked
    bold: 0 -1, 3 - 4 and 6 - 7.
    Figure 1: Critical links
    It is known that:
    1. the connection links are bi–directional;
    2. a server is not directly connected to itself;
    3. two servers are interconnected if they are directly connected or if they are interconnected with
    the same server;
    4. the network can have stand–alone sub–networks.
    Write a program that finds all critical links of a given computer network.
    Input
    The program reads sets of data from a text file. Each data set specifies the structure of a network and
    has the format:
    no of servers
    server0 (no of direct connections) connected server . . . connected server
    . . .
    serverno of servers (no of direct connections) connected server . . . connected server
    The first line contains a positive integer no of servers(possibly 0) which is the number of network
    servers. The next no of servers lines, one for each server in the network, are randomly ordered and
    show the way servers are connected. The line corresponding to serverk, 0 ≤ k ≤ no of servers − 1,
    specifies the number of direct connections of serverk and the servers which are directly connected to
    serverk. Servers are represented by integers from 0 to no of servers − 1. Input data are correct. The
    first data set from sample input below corresponds to the network in figure 1, while the second data
    set specifies an empty network.
    Output
    The result of the program is on standard output. For each data set the program prints the number of
    critical links and the critical links, one link per line, starting from the beginning of the line, as shown
    in the sample output below. The links are listed in ascending order according to their first element.
    The output for the data set is followed by an empty line.
    Sample Input
    8
    0 (1) 1
    1 (3) 2 0 3
    2 (2) 1 3
    3 (3) 1 2 4
    4 (1) 3
    7 (1) 6
    6 (1) 7
    5 (0)
    0
    Sample Output
    3 critical links
    0 - 1
    3 - 4
    6 - 7


    0 critical links

     

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737

     

    给你一个图,让你求这个图中哪些是桥,并输出;

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    #include <vector>
    using namespace std;
    typedef long long LL;
    #define N 10005
    #define met(a, b) memset(a, b, sizeof(a))
    
    int dfn[N], low[N], Time, ans;
    int n, f[N];
    vector<vector<int> >G;
    
    struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }a[N];
    
    void Init()
    {
        met(dfn, 0);
        met(low, 0);
        met(f, 0);
        met(a, 0);
        G.clear();
        G.resize(n+3);
        Time = 0;
    }
    
    void Tarjan(int u, int fa)
    {
        low[u] = dfn[u] = ++Time;
        f[u] = fa;
        int len = G[u].size(), v;
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
            if(!dfn[v])
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
    
                if(low[v] > dfn[u])///判断是否是桥;
                {
                    a[ans].x = u;
                    a[ans].y = v;
                    if(a[ans].x>a[ans].y)swap(a[ans].x, a[ans].y);
                    ans++;
                }
            }
            else if(fa != v)
                low[u] = min(dfn[v], low[u]);
        }
    }
    
    
    int main()
    {
        while(scanf("%d", &n) != EOF)
        {
            Init();
    
            int u, v, m;
    
            for(int i=0; i<n; i++)
            {
                scanf("%d (%d)", &u, &m);
                for(int j=0; j<m; j++)
                {
                    scanf("%d", &v);
                    G[u].push_back(v);
                    G[v].push_back(u);
                }
            }
            ans = 0;
    
            for(int i=0; i<n; i++)
                if(!dfn[i])
                    Tarjan(i, -1);
    
            sort(a, a+ans);
    
            printf("%d critical links
    ", ans);
            for(int i=0; i<ans; i++)
                printf("%d - %d
    ", a[i].x, a[i].y);
            printf("
    ");
        }
        return 0;
    }
    View Code
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    #include <vector>
    using namespace std;
    typedef long long LL;
    #define N 10005
    #define met(a, b) memset(a, b, sizeof(a))
    
    int dfn[N], low[N], Time;
    int n, f[N];
    vector<vector<int> >G;
    
    struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }a[N];
    
    void Init()
    {
        met(dfn, 0);
        met(low, 0);
        met(f, 0);
        met(a, 0);
        G.clear();
        G.resize(n+3);
        Time = 0;
    }
    
    void Tarjan(int u, int fa)
    {
        low[u] = dfn[u] = ++Time;
        f[u] = fa;
        int len = G[u].size(), v;
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
            if(!dfn[v])
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
            }
            else if(fa != v)
                low[u] = min(dfn[v], low[u]);
        }
    }
    
    
    int main()
    {
        while(scanf("%d", &n) != EOF)
        {
            Init();
    
            int u, v, m;
    
            for(int i=0; i<n; i++)
            {
                scanf("%d (%d)", &u, &m);
                for(int j=0; j<m; j++)
                {
                    scanf("%d", &v);
                    G[u].push_back(v);
                    G[v].push_back(u);
                }
            }
    
            for(int i=0; i<n; i++)
                if(!dfn[i])
                    Tarjan(i, -1);
    
            int ans = 0;
    
            for(int i=0; i<n; i++)
            {
                v = f[i];
                if(v!=-1 && low[i]>dfn[v])
                {
                    a[ans].x = i;
                    a[ans].y = v;
                    if(a[ans].x>a[ans].y)swap(a[ans].x, a[ans].y);
                    ans++;
                }
            }
            sort(a, a+ans);
    
            printf("%d critical links
    ", ans);
            for(int i=0; i<ans; i++)
                printf("%d - %d
    ", a[i].x, a[i].y);
            printf("
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    halcon机器视觉工程开发思路
    创建子窗口新线程-线程间操作无效:从不是创建控件的线程访问它
    c#多个按钮执行同一类事件-按钮按下和弹起
    winform子窗口与父窗口的交互-使用委托与事件
    winform子窗口调用父窗口的控件及方法-一般调用
    Lambda表达式的用法
    c#WinForm中TeeChart控件的注册和使用
    c#实现串口通信
    [Revit]开始:编写一个简单外部命令
    [Revit]Autodesk Revit 二次开发整理(资料、准备工作和环境搭建)
  • 原文地址:https://www.cnblogs.com/zhengguiping--9876/p/5499480.html
Copyright © 2011-2022 走看看