先进行高斯消元
因为要求最少的开关次数,那么:
对于关键元,我们可以通过带入消元求出,
对于自由元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1
#include <cmath> #include <cstdio> #include <iostream> #define N 40 using namespace std; int n, m, sum, mn = ~(1 << 31); int a[N][N], ans[N]; inline void Guass() { int i, j, k; for(j = 1; j <= n; j++) { k = j; for(i = j; i <= n; i++) if(a[i][j] > a[k][j]) k = i; if(k != j) swap(a[k], a[j]); for(i = j + 1; i <= n; i++) if(a[i][j]) for(k = j; k <= n + 1; k++) a[i][k] ^= a[j][k]; } } inline void dfs(int now, int sum) { if(sum >= mn) return; if(!now) { mn = min(mn, sum); return; } int i; if(a[now][now]) { ans[now] = a[now][n + 1]; for(i = now + 1; i <= n; i++) ans[now] ^= (ans[i] * a[now][i]); dfs(now - 1, sum + bool(ans[now])); } else { ans[now] = 0; dfs(now - 1, sum); ans[now] = 1; dfs(now - 1, sum + 1); } } int main() { int i, x, y; scanf("%d %d", &n, &m); for(i = 1; i <= n; i++) a[i][i] = 1, a[i][n + 1] = 1; for(i = 1; i <= m; i++) { scanf("%d %d", &x, &y); a[x][y] = 1; a[y][x] = 1; } Guass(); dfs(n, 0); printf("%d ", mn); return 0; }