需要n*m的算法,考虑单调队列
可以预处理出来
a[i][j]表示以i,j为右下角的绿化带+花坛的和
b[i][j]表示以i,j为右下角的花坛的和
那么我们可以单调队列跑出来在A-C-1,B-D-1的矩阵中的b[i][j]的最小值
枚举i,j,用取a[i][j]-ans[i-1][j-1]的最大值
#include <cstdio> #include <iostream> #define N 2001 using namespace std; int n, m, A, B, C, D, E, F, h, t, ans; int a[N][N], b[N][N], c[N][N], ans1[N][N], ans2[N][N], q[N]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } inline void work1(int k) { int i; h = 1, t = 0; for(i = D; i <= m; i++) { while(h <= t && b[k][q[t]] > b[k][i]) t--; q[++t] = i; while(h <= t && q[h] <= i - F) h++; ans1[k][i] = b[k][q[h]]; } } inline void work2(int k) { int i; h = 1, t = 0; for(i = C; i <= n; i++) { while(h <= t && ans1[q[t]][k] > ans1[i][k]) t--; q[++t] = i; while(h <= t && q[h] <= i - E) h++; ans2[i][k] = ans1[q[h]][k]; } } int main() { int i, j; n = read(); m = read(); A = read(); B = read(); C = read(); D = read(); E = A - C - 1; F = B - D - 1; for(i = 1; i <= n; i++) for(j = 1; j <= m; j++) c[i][j] = read() + c[i][j - 1] + c[i - 1][j] - c[i - 1][j - 1]; for(i = 1; i <= n; i++) for(j = 1; j <= m; j++) { if(i >= A && j >= B) a[i][j] = c[i][j] - c[i - A][j] - c[i][j - B] + c[i - A][j - B]; if(i >= C && j >= D) b[i][j] = c[i][j] - c[i - C][j] - c[i][j - D] + c[i - C][j - D]; } for(i = C; i <= n; i++) work1(i); for(i = D; i <= m; i++) work2(i); for(i = A; i <= n; i++) for(j = B; j <= m; j++) ans = max(ans, a[i][j] - ans2[i - 1][j - 1]); printf("%d ", ans); return 0; }