zoukankan      html  css  js  c++  java
  • caffe_ssd学习-用自己的数据做训练

    几乎没用过linux操作系统,不懂shell编程,linux下shell+windows下UltraEdit勉勉强强生成了train.txt和val.txt期间各种错误辛酸不表,照着examples/imagenet/readme勉勉强强用自己的数据,按imagenet的训练方法,把reference_caffenet训起来了,小笔记本的风扇又开始呼呼呼的转了。

    跑了一晚上,小笔记本憋了,还是报错(syncedmem.hpp:25 check failed:*ptr host allocation of size 191102976 failed)猜测还是内存不够的问题,相同的配置方式在台式机上能跑,早晨过来迭代到800次了:

      1 I1101 05:51:24.763746  2942 solver.cpp:243] Iteration 698, loss = 0.246704
      2 I1101 05:51:24.763829  2942 solver.cpp:259]     Train net output #0: loss = 0.246704 (* 1 = 0.246704 loss)
      3 I1101 05:51:24.763837  2942 sgd_solver.cpp:138] Iteration 698, lr = 0.01
      4 I1101 05:52:20.169235  2942 solver.cpp:243] Iteration 699, loss = 0.214295
      5 I1101 05:52:20.169353  2942 solver.cpp:259]     Train net output #0: loss = 0.214295 (* 1 = 0.214295 loss)
      6 I1101 05:52:20.169360  2942 sgd_solver.cpp:138] Iteration 699, lr = 0.01
      7 I1101 05:53:15.372921  2942 solver.cpp:243] Iteration 700, loss = 0.247836
      8 I1101 05:53:15.373028  2942 solver.cpp:259]     Train net output #0: loss = 0.247836 (* 1 = 0.247836 loss)
      9 I1101 05:53:15.373049  2942 sgd_solver.cpp:138] Iteration 700, lr = 0.01
     10 I1101 05:54:11.039271  2942 solver.cpp:243] Iteration 701, loss = 0.24083
     11 I1101 05:54:11.039353  2942 solver.cpp:259]     Train net output #0: loss = 0.24083 (* 1 = 0.24083 loss)
     12 I1101 05:54:11.039361  2942 sgd_solver.cpp:138] Iteration 701, lr = 0.01
     13 I1101 05:55:06.733603  2942 solver.cpp:243] Iteration 702, loss = 0.185371
     14 I1101 05:55:06.733696  2942 solver.cpp:259]     Train net output #0: loss = 0.185371 (* 1 = 0.185371 loss)
     15 I1101 05:55:06.733716  2942 sgd_solver.cpp:138] Iteration 702, lr = 0.01
     16 I1101 05:56:02.576714  2942 solver.cpp:243] Iteration 703, loss = 0.154825
     17 I1101 05:56:02.576802  2942 solver.cpp:259]     Train net output #0: loss = 0.154825 (* 1 = 0.154825 loss)
     18 I1101 05:56:02.576810  2942 sgd_solver.cpp:138] Iteration 703, lr = 0.01
     19 I1101 05:56:58.484149  2942 solver.cpp:243] Iteration 704, loss = 0.222496
     20 I1101 05:56:58.484272  2942 solver.cpp:259]     Train net output #0: loss = 0.222496 (* 1 = 0.222496 loss)
     21 I1101 05:56:58.484292  2942 sgd_solver.cpp:138] Iteration 704, lr = 0.01
     22 I1101 05:57:53.968674  2942 solver.cpp:243] Iteration 705, loss = 0.223804
     23 I1101 05:57:53.968770  2942 solver.cpp:259]     Train net output #0: loss = 0.223804 (* 1 = 0.223804 loss)
     24 I1101 05:57:53.968789  2942 sgd_solver.cpp:138] Iteration 705, lr = 0.01
     25 I1101 05:58:49.514394  2942 solver.cpp:243] Iteration 706, loss = 0.178994
     26 I1101 05:58:49.514477  2942 solver.cpp:259]     Train net output #0: loss = 0.178994 (* 1 = 0.178994 loss)
     27 I1101 05:58:49.514482  2942 sgd_solver.cpp:138] Iteration 706, lr = 0.01
     28 I1101 05:59:44.914528  2942 solver.cpp:243] Iteration 707, loss = 0.231146
     29 I1101 05:59:44.914618  2942 solver.cpp:259]     Train net output #0: loss = 0.231146 (* 1 = 0.231146 loss)
     30 I1101 05:59:44.914625  2942 sgd_solver.cpp:138] Iteration 707, lr = 0.01
     31 I1101 06:00:40.380048  2942 solver.cpp:243] Iteration 708, loss = 0.2585
     32 I1101 06:00:40.380169  2942 solver.cpp:259]     Train net output #0: loss = 0.2585 (* 1 = 0.2585 loss)
     33 I1101 06:00:40.380188  2942 sgd_solver.cpp:138] Iteration 708, lr = 0.01
     34 I1101 06:01:35.776782  2942 solver.cpp:243] Iteration 709, loss = 0.213343
     35 I1101 06:01:35.776881  2942 solver.cpp:259]     Train net output #0: loss = 0.213343 (* 1 = 0.213343 loss)
     36 I1101 06:01:35.776888  2942 sgd_solver.cpp:138] Iteration 709, lr = 0.01
     37 I1101 06:02:31.642572  2942 solver.cpp:243] Iteration 710, loss = 0.209495
     38 I1101 06:02:31.642648  2942 solver.cpp:259]     Train net output #0: loss = 0.209495 (* 1 = 0.209495 loss)
     39 I1101 06:02:31.642654  2942 sgd_solver.cpp:138] Iteration 710, lr = 0.01
     40 I1101 06:03:27.265415  2942 solver.cpp:243] Iteration 711, loss = 0.222363
     41 I1101 06:03:27.265513  2942 solver.cpp:259]     Train net output #0: loss = 0.222363 (* 1 = 0.222363 loss)
     42 I1101 06:03:27.265522  2942 sgd_solver.cpp:138] Iteration 711, lr = 0.01
     43 I1101 06:04:22.963587  2942 solver.cpp:243] Iteration 712, loss = 0.156492
     44 I1101 06:04:22.963680  2942 solver.cpp:259]     Train net output #0: loss = 0.156492 (* 1 = 0.156492 loss)
     45 I1101 06:04:22.963701  2942 sgd_solver.cpp:138] Iteration 712, lr = 0.01
     46 I1101 06:05:18.575387  2942 solver.cpp:243] Iteration 713, loss = 0.23963
     47 I1101 06:05:18.575475  2942 solver.cpp:259]     Train net output #0: loss = 0.23963 (* 1 = 0.23963 loss)
     48 I1101 06:05:18.575484  2942 sgd_solver.cpp:138] Iteration 713, lr = 0.01
     49 I1101 06:06:13.736877  2942 solver.cpp:243] Iteration 714, loss = 0.198127
     50 I1101 06:06:13.736976  2942 solver.cpp:259]     Train net output #0: loss = 0.198127 (* 1 = 0.198127 loss)
     51 I1101 06:06:13.736984  2942 sgd_solver.cpp:138] Iteration 714, lr = 0.01
     52 I1101 06:07:09.226873  2942 solver.cpp:243] Iteration 715, loss = 0.211781
     53 I1101 06:07:09.226959  2942 solver.cpp:259]     Train net output #0: loss = 0.211781 (* 1 = 0.211781 loss)
     54 I1101 06:07:09.226966  2942 sgd_solver.cpp:138] Iteration 715, lr = 0.01
     55 I1101 06:08:04.730242  2942 solver.cpp:243] Iteration 716, loss = 0.250581
     56 I1101 06:08:04.730329  2942 solver.cpp:259]     Train net output #0: loss = 0.250581 (* 1 = 0.250581 loss)
     57 I1101 06:08:04.730335  2942 sgd_solver.cpp:138] Iteration 716, lr = 0.01
     58 I1101 06:09:00.274008  2942 solver.cpp:243] Iteration 717, loss = 0.213366
     59 I1101 06:09:00.274089  2942 solver.cpp:259]     Train net output #0: loss = 0.213366 (* 1 = 0.213366 loss)
     60 I1101 06:09:00.274096  2942 sgd_solver.cpp:138] Iteration 717, lr = 0.01
     61 I1101 06:09:55.551977  2942 solver.cpp:243] Iteration 718, loss = 0.229803
     62 I1101 06:09:55.552062  2942 solver.cpp:259]     Train net output #0: loss = 0.229803 (* 1 = 0.229803 loss)
     63 I1101 06:09:55.552070  2942 sgd_solver.cpp:138] Iteration 718, lr = 0.01
     64 I1101 06:10:51.295166  2942 solver.cpp:243] Iteration 719, loss = 0.182805
     65 I1101 06:10:51.295260  2942 solver.cpp:259]     Train net output #0: loss = 0.182805 (* 1 = 0.182805 loss)
     66 I1101 06:10:51.295281  2942 sgd_solver.cpp:138] Iteration 719, lr = 0.01
     67 I1101 06:11:46.892568  2942 solver.cpp:243] Iteration 720, loss = 0.174111
     68 I1101 06:11:46.892639  2942 solver.cpp:259]     Train net output #0: loss = 0.174111 (* 1 = 0.174111 loss)
     69 I1101 06:11:46.892647  2942 sgd_solver.cpp:138] Iteration 720, lr = 0.01
     70 I1101 06:12:42.373394  2942 solver.cpp:243] Iteration 721, loss = 0.159915
     71 I1101 06:12:42.373476  2942 solver.cpp:259]     Train net output #0: loss = 0.159915 (* 1 = 0.159915 loss)
     72 I1101 06:12:42.373482  2942 sgd_solver.cpp:138] Iteration 721, lr = 0.01
     73 I1101 06:13:37.606986  2942 solver.cpp:243] Iteration 722, loss = 0.194667
     74 I1101 06:13:37.607105  2942 solver.cpp:259]     Train net output #0: loss = 0.194667 (* 1 = 0.194667 loss)
     75 I1101 06:13:37.607125  2942 sgd_solver.cpp:138] Iteration 722, lr = 0.01
     76 I1101 06:14:32.550334  2942 solver.cpp:243] Iteration 723, loss = 0.192629
     77 I1101 06:14:32.550433  2942 solver.cpp:259]     Train net output #0: loss = 0.192629 (* 1 = 0.192629 loss)
     78 I1101 06:14:32.550442  2942 sgd_solver.cpp:138] Iteration 723, lr = 0.01
     79 I1101 06:15:27.603406  2942 solver.cpp:243] Iteration 724, loss = 0.189146
     80 I1101 06:15:27.603489  2942 solver.cpp:259]     Train net output #0: loss = 0.189146 (* 1 = 0.189146 loss)
     81 I1101 06:15:27.603497  2942 sgd_solver.cpp:138] Iteration 724, lr = 0.01
     82 I1101 06:16:22.925781  2942 solver.cpp:243] Iteration 725, loss = 0.2837
     83 I1101 06:16:22.925882  2942 solver.cpp:259]     Train net output #0: loss = 0.2837 (* 1 = 0.2837 loss)
     84 I1101 06:16:22.925902  2942 sgd_solver.cpp:138] Iteration 725, lr = 0.01
     85 I1101 06:17:18.304738  2942 solver.cpp:243] Iteration 726, loss = 0.22247
     86 I1101 06:17:18.304850  2942 solver.cpp:259]     Train net output #0: loss = 0.22247 (* 1 = 0.22247 loss)
     87 I1101 06:17:18.304870  2942 sgd_solver.cpp:138] Iteration 726, lr = 0.01
     88 I1101 06:18:13.775182  2942 solver.cpp:243] Iteration 727, loss = 0.22343
     89 I1101 06:18:13.775266  2942 solver.cpp:259]     Train net output #0: loss = 0.22343 (* 1 = 0.22343 loss)
     90 I1101 06:18:13.775274  2942 sgd_solver.cpp:138] Iteration 727, lr = 0.01
     91 I1101 06:19:09.986521  2942 solver.cpp:243] Iteration 728, loss = 0.208602
     92 I1101 06:19:09.986620  2942 solver.cpp:259]     Train net output #0: loss = 0.208602 (* 1 = 0.208602 loss)
     93 I1101 06:19:09.986629  2942 sgd_solver.cpp:138] Iteration 728, lr = 0.01
     94 I1101 06:20:05.922881  2942 solver.cpp:243] Iteration 729, loss = 0.179899
     95 I1101 06:20:05.922969  2942 solver.cpp:259]     Train net output #0: loss = 0.179899 (* 1 = 0.179899 loss)
     96 I1101 06:20:05.922976  2942 sgd_solver.cpp:138] Iteration 729, lr = 0.01
     97 I1101 06:21:01.568653  2942 solver.cpp:243] Iteration 730, loss = 0.25694
     98 I1101 06:21:01.568696  2942 solver.cpp:259]     Train net output #0: loss = 0.25694 (* 1 = 0.25694 loss)
     99 I1101 06:21:01.568701  2942 sgd_solver.cpp:138] Iteration 730, lr = 0.01
    100 I1101 06:21:57.061185  2942 solver.cpp:243] Iteration 731, loss = 0.184521
    101 I1101 06:21:57.061267  2942 solver.cpp:259]     Train net output #0: loss = 0.184521 (* 1 = 0.184521 loss)
    102 I1101 06:21:57.061275  2942 sgd_solver.cpp:138] Iteration 731, lr = 0.01
    103 I1101 06:22:52.319211  2942 solver.cpp:243] Iteration 732, loss = 0.214978
    104 I1101 06:22:52.319324  2942 solver.cpp:259]     Train net output #0: loss = 0.214978 (* 1 = 0.214978 loss)
    105 I1101 06:22:52.319332  2942 sgd_solver.cpp:138] Iteration 732, lr = 0.01
    106 I1101 06:23:47.861532  2942 solver.cpp:243] Iteration 733, loss = 0.166787
    107 I1101 06:23:47.861619  2942 solver.cpp:259]     Train net output #0: loss = 0.166787 (* 1 = 0.166787 loss)
    108 I1101 06:23:47.861626  2942 sgd_solver.cpp:138] Iteration 733, lr = 0.01
    109 I1101 06:24:43.277447  2942 solver.cpp:243] Iteration 734, loss = 0.245544
    110 I1101 06:24:43.277559  2942 solver.cpp:259]     Train net output #0: loss = 0.245544 (* 1 = 0.245544 loss)
    111 I1101 06:24:43.277565  2942 sgd_solver.cpp:138] Iteration 734, lr = 0.01
    112 I1101 06:25:38.757647  2942 solver.cpp:243] Iteration 735, loss = 0.200957
    113 I1101 06:25:38.757745  2942 solver.cpp:259]     Train net output #0: loss = 0.200957 (* 1 = 0.200957 loss)
    114 I1101 06:25:38.757766  2942 sgd_solver.cpp:138] Iteration 735, lr = 0.01
    115 I1101 06:26:34.590348  2942 solver.cpp:243] Iteration 736, loss = 0.206711
    116 I1101 06:26:34.590428  2942 solver.cpp:259]     Train net output #0: loss = 0.206711 (* 1 = 0.206711 loss)
    117 I1101 06:26:34.590435  2942 sgd_solver.cpp:138] Iteration 736, lr = 0.01
    118 I1101 06:27:30.571000  2942 solver.cpp:243] Iteration 737, loss = 0.190287
    119 I1101 06:27:30.571082  2942 solver.cpp:259]     Train net output #0: loss = 0.190287 (* 1 = 0.190287 loss)
    120 I1101 06:27:30.571089  2942 sgd_solver.cpp:138] Iteration 737, lr = 0.01
    121 I1101 06:28:26.604413  2942 solver.cpp:243] Iteration 738, loss = 0.27267
    122 I1101 06:28:26.604490  2942 solver.cpp:259]     Train net output #0: loss = 0.27267 (* 1 = 0.27267 loss)
    123 I1101 06:28:26.604509  2942 sgd_solver.cpp:138] Iteration 738, lr = 0.01
    124 I1101 06:29:22.135064  2942 solver.cpp:243] Iteration 739, loss = 0.259939
    125 I1101 06:29:22.135135  2942 solver.cpp:259]     Train net output #0: loss = 0.259939 (* 1 = 0.259939 loss)
    126 I1101 06:29:22.135143  2942 sgd_solver.cpp:138] Iteration 739, lr = 0.01
    127 I1101 06:30:17.477607  2942 solver.cpp:243] Iteration 740, loss = 0.180358
    128 I1101 06:30:17.477692  2942 solver.cpp:259]     Train net output #0: loss = 0.180358 (* 1 = 0.180358 loss)
    129 I1101 06:30:17.477699  2942 sgd_solver.cpp:138] Iteration 740, lr = 0.01
    130 I1101 06:31:12.490366  2942 solver.cpp:243] Iteration 741, loss = 0.210995
    131 I1101 06:31:12.490449  2942 solver.cpp:259]     Train net output #0: loss = 0.210995 (* 1 = 0.210995 loss)
    132 I1101 06:31:12.490468  2942 sgd_solver.cpp:138] Iteration 741, lr = 0.01
    133 I1101 06:32:07.610287  2942 solver.cpp:243] Iteration 742, loss = 0.240796
    134 I1101 06:32:07.610374  2942 solver.cpp:259]     Train net output #0: loss = 0.240796 (* 1 = 0.240796 loss)
    135 I1101 06:32:07.610383  2942 sgd_solver.cpp:138] Iteration 742, lr = 0.01
    136 I1101 06:33:02.604507  2942 solver.cpp:243] Iteration 743, loss = 0.242676
    137 I1101 06:33:02.604640  2942 solver.cpp:259]     Train net output #0: loss = 0.242676 (* 1 = 0.242676 loss)
    138 I1101 06:33:02.604648  2942 sgd_solver.cpp:138] Iteration 743, lr = 0.01
    139 I1101 06:33:57.804772  2942 solver.cpp:243] Iteration 744, loss = 0.213677
    140 I1101 06:33:57.804877  2942 solver.cpp:259]     Train net output #0: loss = 0.213677 (* 1 = 0.213677 loss)
    141 I1101 06:33:57.804898  2942 sgd_solver.cpp:138] Iteration 744, lr = 0.01
    142 I1101 06:34:53.220233  2942 solver.cpp:243] Iteration 745, loss = 0.164903
    143 I1101 06:34:53.220304  2942 solver.cpp:259]     Train net output #0: loss = 0.164903 (* 1 = 0.164903 loss)
    144 I1101 06:34:53.220310  2942 sgd_solver.cpp:138] Iteration 745, lr = 0.01
    145 I1101 06:35:48.960155  2942 solver.cpp:243] Iteration 746, loss = 0.229432
    146 I1101 06:35:48.960199  2942 solver.cpp:259]     Train net output #0: loss = 0.229432 (* 1 = 0.229432 loss)
    147 I1101 06:35:48.960220  2942 sgd_solver.cpp:138] Iteration 746, lr = 0.01
    148 I1101 06:36:44.706097  2942 solver.cpp:243] Iteration 747, loss = 0.164644
    149 I1101 06:36:44.706193  2942 solver.cpp:259]     Train net output #0: loss = 0.164644 (* 1 = 0.164644 loss)
    150 I1101 06:36:44.706212  2942 sgd_solver.cpp:138] Iteration 747, lr = 0.01
    151 I1101 06:37:40.333650  2942 solver.cpp:243] Iteration 748, loss = 0.190379
    152 I1101 06:37:40.333721  2942 solver.cpp:259]     Train net output #0: loss = 0.190379 (* 1 = 0.190379 loss)
    153 I1101 06:37:40.333729  2942 sgd_solver.cpp:138] Iteration 748, lr = 0.01
    154 I1101 06:38:35.466141  2942 solver.cpp:243] Iteration 749, loss = 0.19267
    155 I1101 06:38:35.466250  2942 solver.cpp:259]     Train net output #0: loss = 0.19267 (* 1 = 0.19267 loss)
    156 I1101 06:38:35.466259  2942 sgd_solver.cpp:138] Iteration 749, lr = 0.01
    157 I1101 06:39:30.480350  2942 solver.cpp:243] Iteration 750, loss = 0.183797
    158 I1101 06:39:30.480445  2942 solver.cpp:259]     Train net output #0: loss = 0.183797 (* 1 = 0.183797 loss)
    159 I1101 06:39:30.480453  2942 sgd_solver.cpp:138] Iteration 750, lr = 0.01
    160 I1101 06:40:25.350738  2942 solver.cpp:243] Iteration 751, loss = 0.159131
    161 I1101 06:40:25.350818  2942 solver.cpp:259]     Train net output #0: loss = 0.159131 (* 1 = 0.159131 loss)
    162 I1101 06:40:25.350826  2942 sgd_solver.cpp:138] Iteration 751, lr = 0.01
    163 I1101 06:41:20.152151  2942 solver.cpp:243] Iteration 752, loss = 0.228896
    164 I1101 06:41:20.152248  2942 solver.cpp:259]     Train net output #0: loss = 0.228896 (* 1 = 0.228896 loss)
    165 I1101 06:41:20.152256  2942 sgd_solver.cpp:138] Iteration 752, lr = 0.01
    166 I1101 06:42:15.041281  2942 solver.cpp:243] Iteration 753, loss = 0.18304
    167 I1101 06:42:15.041394  2942 solver.cpp:259]     Train net output #0: loss = 0.18304 (* 1 = 0.18304 loss)
    168 I1101 06:42:15.041402  2942 sgd_solver.cpp:138] Iteration 753, lr = 0.01
    169 I1101 06:43:10.346072  2942 solver.cpp:243] Iteration 754, loss = 0.156069
    170 I1101 06:43:10.346170  2942 solver.cpp:259]     Train net output #0: loss = 0.156069 (* 1 = 0.156069 loss)
    171 I1101 06:43:10.346177  2942 sgd_solver.cpp:138] Iteration 754, lr = 0.01
    172 I1101 06:44:05.998122  2942 solver.cpp:243] Iteration 755, loss = 0.182228
    173 I1101 06:44:05.998195  2942 solver.cpp:259]     Train net output #0: loss = 0.182228 (* 1 = 0.182228 loss)
    174 I1101 06:44:05.998214  2942 sgd_solver.cpp:138] Iteration 755, lr = 0.01
    175 I1101 06:45:01.561781  2942 solver.cpp:243] Iteration 756, loss = 0.216226
    176 I1101 06:45:01.561890  2942 solver.cpp:259]     Train net output #0: loss = 0.216226 (* 1 = 0.216226 loss)
    177 I1101 06:45:01.561898  2942 sgd_solver.cpp:138] Iteration 756, lr = 0.01
    178 I1101 06:45:56.949368  2942 solver.cpp:243] Iteration 757, loss = 0.18065
    179 I1101 06:45:56.949447  2942 solver.cpp:259]     Train net output #0: loss = 0.18065 (* 1 = 0.18065 loss)
    180 I1101 06:45:56.949455  2942 sgd_solver.cpp:138] Iteration 757, lr = 0.01
    181 I1101 06:46:52.247467  2942 solver.cpp:243] Iteration 758, loss = 0.182474
    182 I1101 06:46:52.247581  2942 solver.cpp:259]     Train net output #0: loss = 0.182474 (* 1 = 0.182474 loss)
    183 I1101 06:46:52.247588  2942 sgd_solver.cpp:138] Iteration 758, lr = 0.01
    184 I1101 06:47:47.383482  2942 solver.cpp:243] Iteration 759, loss = 0.212113
    185 I1101 06:47:47.383568  2942 solver.cpp:259]     Train net output #0: loss = 0.212113 (* 1 = 0.212113 loss)
    186 I1101 06:47:47.383574  2942 sgd_solver.cpp:138] Iteration 759, lr = 0.01
    187 I1101 06:48:42.570590  2942 solver.cpp:243] Iteration 760, loss = 0.206157
    188 I1101 06:48:42.570747  2942 solver.cpp:259]     Train net output #0: loss = 0.206157 (* 1 = 0.206157 loss)
    189 I1101 06:48:42.570770  2942 sgd_solver.cpp:138] Iteration 760, lr = 0.01
    190 I1101 06:49:37.778367  2942 solver.cpp:243] Iteration 761, loss = 0.201435
    191 I1101 06:49:37.778491  2942 solver.cpp:259]     Train net output #0: loss = 0.201435 (* 1 = 0.201435 loss)
    192 I1101 06:49:37.778497  2942 sgd_solver.cpp:138] Iteration 761, lr = 0.01
    193 I1101 06:50:32.906011  2942 solver.cpp:243] Iteration 762, loss = 0.232756
    194 I1101 06:50:32.906136  2942 solver.cpp:259]     Train net output #0: loss = 0.232756 (* 1 = 0.232756 loss)
    195 I1101 06:50:32.906154  2942 sgd_solver.cpp:138] Iteration 762, lr = 0.01
    196 I1101 06:51:28.507810  2942 solver.cpp:243] Iteration 763, loss = 0.239409
    197 I1101 06:51:28.507935  2942 solver.cpp:259]     Train net output #0: loss = 0.239409 (* 1 = 0.239409 loss)
    198 I1101 06:51:28.507941  2942 sgd_solver.cpp:138] Iteration 763, lr = 0.01
    199 I1101 06:52:24.117368  2942 solver.cpp:243] Iteration 764, loss = 0.210396
    200 I1101 06:52:24.117455  2942 solver.cpp:259]     Train net output #0: loss = 0.210396 (* 1 = 0.210396 loss)
    201 I1101 06:52:24.117462  2942 sgd_solver.cpp:138] Iteration 764, lr = 0.01
    202 I1101 06:53:19.973865  2942 solver.cpp:243] Iteration 765, loss = 0.213389
    203 I1101 06:53:19.973986  2942 solver.cpp:259]     Train net output #0: loss = 0.213389 (* 1 = 0.213389 loss)
    204 I1101 06:53:19.973994  2942 sgd_solver.cpp:138] Iteration 765, lr = 0.01
    205 I1101 06:54:15.469249  2942 solver.cpp:243] Iteration 766, loss = 0.176683
    206 I1101 06:54:15.469341  2942 solver.cpp:259]     Train net output #0: loss = 0.176683 (* 1 = 0.176683 loss)
    207 I1101 06:54:15.469347  2942 sgd_solver.cpp:138] Iteration 766, lr = 0.01
    208 I1101 06:55:10.433040  2942 solver.cpp:243] Iteration 767, loss = 0.175243
    209 I1101 06:55:10.433122  2942 solver.cpp:259]     Train net output #0: loss = 0.175243 (* 1 = 0.175243 loss)
    210 I1101 06:55:10.433130  2942 sgd_solver.cpp:138] Iteration 767, lr = 0.01
    211 I1101 06:56:05.749205  2942 solver.cpp:243] Iteration 768, loss = 0.240504
    212 I1101 06:56:05.749297  2942 solver.cpp:259]     Train net output #0: loss = 0.240504 (* 1 = 0.240504 loss)
    213 I1101 06:56:05.749305  2942 sgd_solver.cpp:138] Iteration 768, lr = 0.01
    214 I1101 06:57:00.961922  2942 solver.cpp:243] Iteration 769, loss = 0.196663
    215 I1101 06:57:00.962010  2942 solver.cpp:259]     Train net output #0: loss = 0.196663 (* 1 = 0.196663 loss)
    216 I1101 06:57:00.962018  2942 sgd_solver.cpp:138] Iteration 769, lr = 0.01
    217 I1101 06:57:56.258919  2942 solver.cpp:243] Iteration 770, loss = 0.180423
    218 I1101 06:57:56.259018  2942 solver.cpp:259]     Train net output #0: loss = 0.180423 (* 1 = 0.180423 loss)
    219 I1101 06:57:56.259026  2942 sgd_solver.cpp:138] Iteration 770, lr = 0.01
    220 I1101 06:58:51.617398  2942 solver.cpp:243] Iteration 771, loss = 0.175648
    221 I1101 06:58:51.617507  2942 solver.cpp:259]     Train net output #0: loss = 0.175648 (* 1 = 0.175648 loss)
    222 I1101 06:58:51.617527  2942 sgd_solver.cpp:138] Iteration 771, lr = 0.01
    223 I1101 06:59:47.129223  2942 solver.cpp:243] Iteration 772, loss = 0.217475
    224 I1101 06:59:47.129295  2942 solver.cpp:259]     Train net output #0: loss = 0.217475 (* 1 = 0.217475 loss)
    225 I1101 06:59:47.129302  2942 sgd_solver.cpp:138] Iteration 772, lr = 0.01
    226 I1101 07:00:42.674275  2942 solver.cpp:243] Iteration 773, loss = 0.172873
    227 I1101 07:00:42.674332  2942 solver.cpp:259]     Train net output #0: loss = 0.172873 (* 1 = 0.172873 loss)
    228 I1101 07:00:42.674340  2942 sgd_solver.cpp:138] Iteration 773, lr = 0.01
    229 I1101 07:01:38.446044  2942 solver.cpp:243] Iteration 774, loss = 0.20526
    230 I1101 07:01:38.446117  2942 solver.cpp:259]     Train net output #0: loss = 0.20526 (* 1 = 0.20526 loss)
    231 I1101 07:01:38.446125  2942 sgd_solver.cpp:138] Iteration 774, lr = 0.01
    232 I1101 07:02:33.842972  2942 solver.cpp:243] Iteration 775, loss = 0.164669
    233 I1101 07:02:33.843098  2942 solver.cpp:259]     Train net output #0: loss = 0.164669 (* 1 = 0.164669 loss)
    234 I1101 07:02:33.843106  2942 sgd_solver.cpp:138] Iteration 775, lr = 0.01
    235 I1101 07:03:28.843194  2942 solver.cpp:243] Iteration 776, loss = 0.123786
    236 I1101 07:03:28.843338  2942 solver.cpp:259]     Train net output #0: loss = 0.123786 (* 1 = 0.123786 loss)
    237 I1101 07:03:28.843358  2942 sgd_solver.cpp:138] Iteration 776, lr = 0.01
    238 I1101 07:04:24.223012  2942 solver.cpp:243] Iteration 777, loss = 0.152694
    239 I1101 07:04:24.223104  2942 solver.cpp:259]     Train net output #0: loss = 0.152694 (* 1 = 0.152694 loss)
    240 I1101 07:04:24.223112  2942 sgd_solver.cpp:138] Iteration 777, lr = 0.01
    241 I1101 07:05:19.547505  2942 solver.cpp:243] Iteration 778, loss = 0.16592
    242 I1101 07:05:19.547611  2942 solver.cpp:259]     Train net output #0: loss = 0.16592 (* 1 = 0.16592 loss)
    243 I1101 07:05:19.547618  2942 sgd_solver.cpp:138] Iteration 778, lr = 0.01
    244 I1101 07:06:14.945013  2942 solver.cpp:243] Iteration 779, loss = 0.131236
    245 I1101 07:06:14.945102  2942 solver.cpp:259]     Train net output #0: loss = 0.131236 (* 1 = 0.131236 loss)
    246 I1101 07:06:14.945109  2942 sgd_solver.cpp:138] Iteration 779, lr = 0.01
    247 I1101 07:07:10.377750  2942 solver.cpp:243] Iteration 780, loss = 0.180781
    248 I1101 07:07:10.377817  2942 solver.cpp:259]     Train net output #0: loss = 0.180781 (* 1 = 0.180781 loss)
    249 I1101 07:07:10.377825  2942 sgd_solver.cpp:138] Iteration 780, lr = 0.01
    250 I1101 07:08:06.142426  2942 solver.cpp:243] Iteration 781, loss = 0.200052
    251 I1101 07:08:06.142537  2942 solver.cpp:259]     Train net output #0: loss = 0.200052 (* 1 = 0.200052 loss)
    252 I1101 07:08:06.142545  2942 sgd_solver.cpp:138] Iteration 781, lr = 0.01
    253 I1101 07:09:01.782235  2942 solver.cpp:243] Iteration 782, loss = 0.166285
    254 I1101 07:09:01.782305  2942 solver.cpp:259]     Train net output #0: loss = 0.166285 (* 1 = 0.166285 loss)
    255 I1101 07:09:01.782312  2942 sgd_solver.cpp:138] Iteration 782, lr = 0.01
    256 I1101 07:09:57.450909  2942 solver.cpp:243] Iteration 783, loss = 0.204904
    257 I1101 07:09:57.451010  2942 solver.cpp:259]     Train net output #0: loss = 0.204904 (* 1 = 0.204904 loss)
    258 I1101 07:09:57.451030  2942 sgd_solver.cpp:138] Iteration 783, lr = 0.01
    259 I1101 07:10:52.858960  2942 solver.cpp:243] Iteration 784, loss = 0.143823
    260 I1101 07:10:52.859050  2942 solver.cpp:259]     Train net output #0: loss = 0.143823 (* 1 = 0.143823 loss)
    261 I1101 07:10:52.859056  2942 sgd_solver.cpp:138] Iteration 784, lr = 0.01
    262 I1101 07:11:48.006325  2942 solver.cpp:243] Iteration 785, loss = 0.158639
    263 I1101 07:11:48.006422  2942 solver.cpp:259]     Train net output #0: loss = 0.158639 (* 1 = 0.158639 loss)
    264 I1101 07:11:48.006443  2942 sgd_solver.cpp:138] Iteration 785, lr = 0.01
    265 I1101 07:12:43.566946  2942 solver.cpp:243] Iteration 786, loss = 0.157527
    266 I1101 07:12:43.567029  2942 solver.cpp:259]     Train net output #0: loss = 0.157527 (* 1 = 0.157527 loss)
    267 I1101 07:12:43.567036  2942 sgd_solver.cpp:138] Iteration 786, lr = 0.01
    268 I1101 07:13:38.747087  2942 solver.cpp:243] Iteration 787, loss = 0.229001
    269 I1101 07:13:38.747169  2942 solver.cpp:259]     Train net output #0: loss = 0.229001 (* 1 = 0.229001 loss)
    270 I1101 07:13:38.747176  2942 sgd_solver.cpp:138] Iteration 787, lr = 0.01
    271 I1101 07:14:34.269659  2942 solver.cpp:243] Iteration 788, loss = 0.166042
    272 I1101 07:14:34.269748  2942 solver.cpp:259]     Train net output #0: loss = 0.166042 (* 1 = 0.166042 loss)
    273 I1101 07:14:34.269755  2942 sgd_solver.cpp:138] Iteration 788, lr = 0.01
    274 I1101 07:15:29.537577  2942 solver.cpp:243] Iteration 789, loss = 0.212571
    275 I1101 07:15:29.537619  2942 solver.cpp:259]     Train net output #0: loss = 0.212571 (* 1 = 0.212571 loss)
    276 I1101 07:15:29.537626  2942 sgd_solver.cpp:138] Iteration 789, lr = 0.01
    277 I1101 07:16:25.185962  2942 solver.cpp:243] Iteration 790, loss = 0.177549
    278 I1101 07:16:25.186005  2942 solver.cpp:259]     Train net output #0: loss = 0.177549 (* 1 = 0.177549 loss)
    279 I1101 07:16:25.186012  2942 sgd_solver.cpp:138] Iteration 790, lr = 0.01
    280 I1101 07:17:20.694247  2942 solver.cpp:243] Iteration 791, loss = 0.219427
    281 I1101 07:17:20.694320  2942 solver.cpp:259]     Train net output #0: loss = 0.219427 (* 1 = 0.219427 loss)
    282 I1101 07:17:20.694329  2942 sgd_solver.cpp:138] Iteration 791, lr = 0.01
    283 I1101 07:18:16.576424  2942 solver.cpp:243] Iteration 792, loss = 0.184091
    284 I1101 07:18:16.576484  2942 solver.cpp:259]     Train net output #0: loss = 0.184091 (* 1 = 0.184091 loss)
    285 I1101 07:18:16.576506  2942 sgd_solver.cpp:138] Iteration 792, lr = 0.01
    286 I1101 07:19:11.834085  2942 solver.cpp:243] Iteration 793, loss = 0.182248
    287 I1101 07:19:11.834184  2942 solver.cpp:259]     Train net output #0: loss = 0.182248 (* 1 = 0.182248 loss)
    288 I1101 07:19:11.834192  2942 sgd_solver.cpp:138] Iteration 793, lr = 0.01
    289 I1101 07:20:06.932883  2942 solver.cpp:243] Iteration 794, loss = 0.138351
    290 I1101 07:20:06.932976  2942 solver.cpp:259]     Train net output #0: loss = 0.138351 (* 1 = 0.138351 loss)
    291 I1101 07:20:06.932982  2942 sgd_solver.cpp:138] Iteration 794, lr = 0.01
    292 I1101 07:21:02.166926  2942 solver.cpp:243] Iteration 795, loss = 0.131442
    293 I1101 07:21:02.167026  2942 solver.cpp:259]     Train net output #0: loss = 0.131442 (* 1 = 0.131442 loss)
    294 I1101 07:21:02.167033  2942 sgd_solver.cpp:138] Iteration 795, lr = 0.01
    295 I1101 07:21:57.211791  2942 solver.cpp:243] Iteration 796, loss = 0.177292
    296 I1101 07:21:57.211889  2942 solver.cpp:259]     Train net output #0: loss = 0.177292 (* 1 = 0.177292 loss)
    297 I1101 07:21:57.211910  2942 sgd_solver.cpp:138] Iteration 796, lr = 0.01
    298 I1101 07:22:52.467435  2942 solver.cpp:243] Iteration 797, loss = 0.163172
    299 I1101 07:22:52.467532  2942 solver.cpp:259]     Train net output #0: loss = 0.163172 (* 1 = 0.163172 loss)
    300 I1101 07:22:52.467540  2942 sgd_solver.cpp:138] Iteration 797, lr = 0.01
    301 I1101 07:23:47.584058  2942 solver.cpp:243] Iteration 798, loss = 0.1557
    302 I1101 07:23:47.584126  2942 solver.cpp:259]     Train net output #0: loss = 0.1557 (* 1 = 0.1557 loss)
    303 I1101 07:23:47.584133  2942 sgd_solver.cpp:138] Iteration 798, lr = 0.01
    304 I1101 07:24:42.980532  2942 solver.cpp:243] Iteration 799, loss = 0.158722
    305 I1101 07:24:42.980628  2942 solver.cpp:259]     Train net output #0: loss = 0.158722 (* 1 = 0.158722 loss)
    306 I1101 07:24:42.980649  2942 sgd_solver.cpp:138] Iteration 799, lr = 0.01
    307 I1101 07:25:38.133345  2942 solver.cpp:243] Iteration 800, loss = 0.193614
    308 I1101 07:25:38.133430  2942 solver.cpp:259]     Train net output #0: loss = 0.193614 (* 1 = 0.193614 loss)
    309 I1101 07:25:38.133437  2942 sgd_solver.cpp:138] Iteration 800, lr = 0.01
    310 I1101 07:26:33.691634  2942 solver.cpp:243] Iteration 801, loss = 0.16334
    311 I1101 07:26:33.691720  2942 solver.cpp:259]     Train net output #0: loss = 0.16334 (* 1 = 0.16334 loss)
    312 I1101 07:26:33.691726  2942 sgd_solver.cpp:138] Iteration 801, lr = 0.01
    313 I1101 07:27:28.735807  2942 solver.cpp:243] Iteration 802, loss = 0.135363
    314 I1101 07:27:28.735888  2942 solver.cpp:259]     Train net output #0: loss = 0.135363 (* 1 = 0.135363 loss)
    315 I1101 07:27:28.735895  2942 sgd_solver.cpp:138] Iteration 802, lr = 0.01
    316 I1101 07:28:23.747395  2942 solver.cpp:243] Iteration 803, loss = 0.201854
    317 I1101 07:28:23.747498  2942 solver.cpp:259]     Train net output #0: loss = 0.201854 (* 1 = 0.201854 loss)
    318 I1101 07:28:23.747516  2942 sgd_solver.cpp:138] Iteration 803, lr = 0.01
    319 I1101 07:29:18.985882  2942 solver.cpp:243] Iteration 804, loss = 0.152548
    320 I1101 07:29:18.985962  2942 solver.cpp:259]     Train net output #0: loss = 0.152548 (* 1 = 0.152548 loss)
    321 I1101 07:29:18.985970  2942 sgd_solver.cpp:138] Iteration 804, lr = 0.01
    322 I1101 07:30:14.139812  2942 solver.cpp:243] Iteration 805, loss = 0.173412
    323 I1101 07:30:14.139940  2942 solver.cpp:259]     Train net output #0: loss = 0.173412 (* 1 = 0.173412 loss)
    324 I1101 07:30:14.139960  2942 sgd_solver.cpp:138] Iteration 805, lr = 0.01
    325 I1101 07:31:09.495632  2942 solver.cpp:243] Iteration 806, loss = 0.185132
    326 I1101 07:31:09.495724  2942 solver.cpp:259]     Train net output #0: loss = 0.185132 (* 1 = 0.185132 loss)
    327 I1101 07:31:09.495733  2942 sgd_solver.cpp:138] Iteration 806, lr = 0.01
    328 I1101 07:32:04.826592  2942 solver.cpp:243] Iteration 807, loss = 0.172771
    329 I1101 07:32:04.826647  2942 solver.cpp:259]     Train net output #0: loss = 0.172771 (* 1 = 0.172771 loss)
    330 I1101 07:32:04.826653  2942 sgd_solver.cpp:138] Iteration 807, lr = 0.01
    331 I1101 07:33:00.284266  2942 solver.cpp:243] Iteration 808, loss = 0.177978
    332 I1101 07:33:00.284364  2942 solver.cpp:259]     Train net output #0: loss = 0.177978 (* 1 = 0.177978 loss)
    333 I1101 07:33:00.284373  2942 sgd_solver.cpp:138] Iteration 808, lr = 0.01
    334 I1101 07:33:55.824797  2942 solver.cpp:243] Iteration 809, loss = 0.130759
    335 I1101 07:33:55.824872  2942 solver.cpp:259]     Train net output #0: loss = 0.130759 (* 1 = 0.130759 loss)
    336 I1101 07:33:55.824880  2942 sgd_solver.cpp:138] Iteration 809, lr = 0.01
    337 I1101 07:34:50.941251  2942 solver.cpp:243] Iteration 810, loss = 0.257597
    338 I1101 07:34:50.941334  2942 solver.cpp:259]     Train net output #0: loss = 0.257597 (* 1 = 0.257597 loss)
    339 I1101 07:34:50.941356  2942 sgd_solver.cpp:138] Iteration 810, lr = 0.01
    340 I1101 07:35:45.703112  2942 solver.cpp:243] Iteration 811, loss = 0.2065
    341 I1101 07:35:45.703183  2942 solver.cpp:259]     Train net output #0: loss = 0.2065 (* 1 = 0.2065 loss)
    342 I1101 07:35:45.703191  2942 sgd_solver.cpp:138] Iteration 811, lr = 0.01
    343 I1101 07:36:40.185742  2942 solver.cpp:243] Iteration 812, loss = 0.197094
    344 I1101 07:36:40.185852  2942 solver.cpp:259]     Train net output #0: loss = 0.197094 (* 1 = 0.197094 loss)
    345 I1101 07:36:40.185858  2942 sgd_solver.cpp:138] Iteration 812, lr = 0.01
    346 I1101 07:37:35.029402  2942 solver.cpp:243] Iteration 813, loss = 0.122207
    347 I1101 07:37:35.029482  2942 solver.cpp:259]     Train net output #0: loss = 0.122207 (* 1 = 0.122207 loss)
    348 I1101 07:37:35.029489  2942 sgd_solver.cpp:138] Iteration 813, lr = 0.01
    349 I1101 07:38:30.204357  2942 solver.cpp:243] Iteration 814, loss = 0.162976
    350 I1101 07:38:30.204438  2942 solver.cpp:259]     Train net output #0: loss = 0.162976 (* 1 = 0.162976 loss)
    351 I1101 07:38:30.204445  2942 sgd_solver.cpp:138] Iteration 814, lr = 0.01
    352 I1101 07:39:25.489464  2942 solver.cpp:243] Iteration 815, loss = 0.218391
    353 I1101 07:39:25.489573  2942 solver.cpp:259]     Train net output #0: loss = 0.218391 (* 1 = 0.218391 loss)
    354 I1101 07:39:25.489581  2942 sgd_solver.cpp:138] Iteration 815, lr = 0.01
    355 I1101 07:40:21.197306  2942 solver.cpp:243] Iteration 816, loss = 0.152489
    356 I1101 07:40:21.197386  2942 solver.cpp:259]     Train net output #0: loss = 0.152489 (* 1 = 0.152489 loss)
    357 I1101 07:40:21.197393  2942 sgd_solver.cpp:138] Iteration 816, lr = 0.01
    358 I1101 07:41:16.851727  2942 solver.cpp:243] Iteration 817, loss = 0.211059
    359 I1101 07:41:16.851809  2942 solver.cpp:259]     Train net output #0: loss = 0.211059 (* 1 = 0.211059 loss)
    360 I1101 07:41:16.851817  2942 sgd_solver.cpp:138] Iteration 817, lr = 0.01
    361 I1101 07:42:12.292263  2942 solver.cpp:243] Iteration 818, loss = 0.172165
    362 I1101 07:42:12.292335  2942 solver.cpp:259]     Train net output #0: loss = 0.172165 (* 1 = 0.172165 loss)
    363 I1101 07:42:12.292342  2942 sgd_solver.cpp:138] Iteration 818, lr = 0.01
    364 I1101 07:43:07.584506  2942 solver.cpp:243] Iteration 819, loss = 0.217142
    365 I1101 07:43:07.584583  2942 solver.cpp:259]     Train net output #0: loss = 0.217142 (* 1 = 0.217142 loss)
    366 I1101 07:43:07.584590  2942 sgd_solver.cpp:138] Iteration 819, lr = 0.01
    367 I1101 07:44:02.289772  2942 solver.cpp:243] Iteration 820, loss = 0.223516
    368 I1101 07:44:02.289875  2942 solver.cpp:259]     Train net output #0: loss = 0.223516 (* 1 = 0.223516 loss)
    369 I1101 07:44:02.289881  2942 sgd_solver.cpp:138] Iteration 820, lr = 0.01
    370 I1101 07:44:56.864765  2942 solver.cpp:243] Iteration 821, loss = 0.201347
    371 I1101 07:44:56.864830  2942 solver.cpp:259]     Train net output #0: loss = 0.201347 (* 1 = 0.201347 loss)
    372 I1101 07:44:56.864837  2942 sgd_solver.cpp:138] Iteration 821, lr = 0.01
    373 I1101 07:45:51.757936  2942 solver.cpp:243] Iteration 822, loss = 0.137515
    374 I1101 07:45:51.758020  2942 solver.cpp:259]     Train net output #0: loss = 0.137515 (* 1 = 0.137515 loss)
    375 I1101 07:45:51.758028  2942 sgd_solver.cpp:138] Iteration 822, lr = 0.01
    376 I1101 07:46:46.580322  2942 solver.cpp:243] Iteration 823, loss = 0.194158
    377 I1101 07:46:46.580425  2942 solver.cpp:259]     Train net output #0: loss = 0.194158 (* 1 = 0.194158 loss)
    378 I1101 07:46:46.580443  2942 sgd_solver.cpp:138] Iteration 823, lr = 0.01
    379 I1101 07:47:41.901865  2942 solver.cpp:243] Iteration 824, loss = 0.201745
    380 I1101 07:47:41.901943  2942 solver.cpp:259]     Train net output #0: loss = 0.201745 (* 1 = 0.201745 loss)
    381 I1101 07:47:41.901962  2942 sgd_solver.cpp:138] Iteration 824, lr = 0.01
    382 I1101 07:48:38.301646  2942 solver.cpp:243] Iteration 825, loss = 0.193692
    383 I1101 07:48:38.301780  2942 solver.cpp:259]     Train net output #0: loss = 0.193692 (* 1 = 0.193692 loss)
    384 I1101 07:48:38.301789  2942 sgd_solver.cpp:138] Iteration 825, lr = 0.01
    385 ^C
    View Code

    看起来好像损失函数在震荡,也不是很懂,ctrl+C停下来,得到了一个caffenet_train_iter_827.caffemodel,在models/bvlc_reference_caffenet目录下,拿到python里测了一下自己的数据,也能分类,虽然很多分不对。

    分类程序是好久之前按网上的demo写的:

     1 if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet_stamp/caffenet_train_iter_827.caffemodel'):
     2     print 'CaffeNet found.'
     3 else:
     4     print 'Downloading pre-trained CaffeNet model...'
     5     
     6 model_def = caffe_root + 'models/bvlc_reference_caffenet_stamp/deploy.prototxt'
     7 model_weights = caffe_root + 'models/bvlc_reference_caffenet_stamp/caffenet_train_iter_827.caffemodel'
     8 
     9 net = caffe.Net(model_def,      # defines the structure of the model
    10                 model_weights,  # contains the trained weights
    11                 caffe.TEST)     # use test mode (e.g., don't perform dropout)
    12 
    13 mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
    14 mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel values
    15 print 'mean-subtracted values:', zip('BGR', mu)
    16 
    17 # create transformer for the input called 'data'
    18 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    19 
    20 transformer.set_transpose('data', (2,0,1))  # move image channels to outermost dimension
    21 transformer.set_mean('data', mu)            # subtract the dataset-mean value in each channel
    22 transformer.set_raw_scale('data', 255)      # rescale from [0, 1] to [0, 255]
    23 transformer.set_channel_swap('data', (2,1,0))  # swap channels from RGB to BGR
    24 net.blobs['data'].reshape(50,        # batch size
    25                           3,         # 3-channel (BGR) images
    26                           227, 227)  # image size is 227x227
    27 
    28 image = caffe.io.load_image(caffe_root + 'examples/images/YP1000016.jpg')
    29 transformed_image = transformer.preprocess('data', image)
    30 plt.imshow(image)
    31 
    32 net.blobs['data'].data[...] = transformed_image
    33 
    34 ### perform classification
    35 output = net.forward()
    36 
    37 output_prob = output['prob'][0]  # the output probability vector for the first image in the batch
    38 
    39 print 'predicted class is:', output_prob.argmax()
    View Code

    train.txt参考各种,觉得这个博客比较良心,数据、怎么写shell也给了:http://blog.csdn.net/gaohuazhao/article/details/69568267

    另有:python写train.txt

    照葫芦画瓢,制作自己的训练数据:

    find ./ -name "*.jpg" > train.txt 可以把目录下所有的.jpg带目录加到train.txt里,怎么把目录名(标签)加在后边还不会,最后是拷出来在windows里用UltraEdit做的...

    find ./ -name "*.jpg" > 1.txt

    参考creat_list.sh

    paste -d' ' train.txt 1.txt >> 2.txt  可以把train.txt和1.txt拼在一起放在2.txt

    因为给的数据都是训练数据,按标签放在一个目录下,怎么随机拆分成val还不知道,参考知乎答案,打算先训一下看,就不测试了,于是直接选了其中一张图片,当做val(如果val.txt为空的话,训练的时候会报错,说val长度不合法)

  • 相关阅读:
    将PHP文件生成静态文件源码
    Entity Framework Code First 学习日记(6)一对多关系
    Entity Framework Code First 学习日记(5)
    Entity Framework Code First 学习日记(3)
    Entity Framework Code First 学习日记(7)多对多关系
    Entity Framework Code First学习日记(2)
    Entity Framework Code First 学习日记(8)一对一关系
    Entity Framework Code First 学习日记(9)映射继承关系
    Entity Framework Code First 学习日记(10)兼容遗留数据库
    Entity Framework Code First 学习日记(4)
  • 原文地址:https://www.cnblogs.com/zhengmeisong/p/7741510.html
Copyright © 2011-2022 走看看