zoukankan      html  css  js  c++  java
  • 假设表示

    我们可以讨论分类问题,忽略y是离散值这一事实,并使用我们的旧线性回归算法来预测y给定x。然而,很容易构造例子,这种方法表现很差。直观地说,也没有道理当h(θ)(x)取值大于1或小于0时,我们知道,Y∈{ 0, 1 }。为了解决这个问题,让我们改变我们的假设H(θ)(x)满足0≤h(θ)(x)≤1。这是通过将θTx插入到逻辑函数中来实现的。

    我们的新形式使用了“S函数”,也称为“逻辑函数”:

    下图显示了S形函数是什么样子的:

    这里所示的函数g(z)将任意实数映射到(0, 1)区间,使得它可以用于将任意值函数转换为更适合于分类的函数。

    Hθ(x)会给我们输出的概率是1。例如,Hθ(x)= 0.7给了我们一个70%的概率,我们的产量是1。我们的预测是0的概率正好是我们的概率为1的补充(例如,如果概率是1是70%,那么它是0的概率是30%)

  • 相关阅读:
    比较两个json数组是否有相同的选项
    使用gulp实现静态资源版本号替换
    Happy Halloween
    前端学习plan
    Python之函数式编程
    秋意浓
    2018给自己个plan,给自己一个小目标
    see goodbye with 2017
    杂记(一)
    The fruit in mid-summer
  • 原文地址:https://www.cnblogs.com/zhengzhe/p/7225204.html
Copyright © 2011-2022 走看看