zoukankan      html  css  js  c++  java
  • 餐巾计划问题 zwk费用流解法

    «问题描述:
    一个餐厅在相继的N 天里,每天需用的餐巾数不尽相同。假设第i天需要ri块餐巾(i=1,
    2,…,N)。餐厅可以购买新的餐巾,每块餐巾的费用为p分;或者把旧餐巾送到快洗部,
    洗一块需m天,其费用为f 分;或者送到慢洗部,洗一块需n 天(n>m),其费用为s<f 分。
    每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多
    少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。
    试设计一个算法为餐厅合理地安排好N 天中餐巾使用计划,使总的花费最小。
    «编程任务:
    编程找出一个最佳餐巾使用计划.
    «数据输入:
    由文件input.txt提供输入数据。文件第1 行有6 个正整数N,p,m,f,n,s。N 是要安排餐巾
    使用计划的天数;p 是每块新餐巾的费用;m 是快洗部洗一块餐巾需用天数;f 是快洗部洗
    一块餐巾需要的费用;n是慢洗部洗一块餐巾需用天数;s是慢洗部洗一块餐巾需要的费用。
    接下来的N 行是餐厅在相继的N 天里,每天需用的餐巾数。
    «结果输出:
    程序运行结束时,将餐厅在相继的N 天里使用餐巾的最小总花费输出到文件output.txt
    中。

    建立源点S汇点T,并把每一天拆分为入点与出点,

    以ai表示第i天需要的餐巾数量

    S向每天的入点连一条容量ai,费用0的边表示新产生的脏餐巾数

    每天的入点向下一天的入点连一条容量无限大,费用0的边表示转移到下一天的脏餐巾

    每天的入点向m天后的出点连一条容量无限大,费用f的边表示送去快洗部洗餐巾

    每天的入点向n天后的出点连一条容量无限大,费用s的边表示送去慢洗部洗餐巾

    每天的出点向T连一条容量ai,费用0的边表示当天需要的干净餐巾

    zwk费用流的实现细节解释在代码注释中

    #include<bits/stdc++.h>
    #define rep(i,a,b) for(int i=a;i<=b;++i)
    using namespace std;
    const int MAXN=5010000;
    const int maxn=5010;
    const int INF=~0U>>1;
    long long int maxflow=0,cost=0;
    int v[maxn],dis[maxn];
    int r[maxn];
    int S,T;
    int N,p,m,f,n,s;
    int tot=0;
    int pointer[maxn];
    struct Edge
    {
        int to,next,cap,op,f,w;
        Edge() {};
        Edge(int b,int c,int nxt,int num,int flow,int weight) {to=b,cap=c,next=nxt,op=num^1,f=flow,w=weight;}
    }edge[MAXN];
    inline void addedge(int a,int b,int c,int w1)
    {
        edge[tot]=Edge(b,c,pointer[a],tot,0,w1);
        pointer[a]=tot++;
        edge[tot]=Edge(a,0,pointer[b],tot,0,-w1);
        pointer[b]=tot++;
    }
    inline int aug(int x,int flow)      //dfs搜增光路 flow代表当前dfs路径中剩余容量最小边的容量
    {
        if(x==T)
        {
            maxflow+=flow;
            cost+=dis[S]*flow;
            return flow;
        }
        v[x]=1;
        int l=flow;
        for(int j=pointer[x];j!=-1;j=edge[j].next)
        {
            int y=edge[j].to;
            if(!v[y]&&edge[j].cap-edge[j].f&&dis[y]+edge[j].w==dis[x])  //距离标号满足要求代表走的这一步是目前情况下到达y的最短路其中的一步
            {
                int tmp=aug(y,min(l,edge[j].cap-edge[j].f));        //
                edge[j].f+=tmp,edge[j^1].f-=tmp,l-=tmp;         //x-->y这条路分走了tmp大小的流量
                if(!l) return flow;                             //到达x点的flow大小的流量被分完了就不必考虑x的其他子节点了
            }
        }
        return flow-l;
    }
    inline bool modlabel()
    {
        int  minh=INF;
        rep(i,S,T)
        {
            if(v[i])
                for(int j=pointer[i];j!=-1;j=edge[j].next)
                {
                    int y=edge[j].to;
                    if(edge[j].cap-edge[j].f>0&&!v[y])
                    {
                        minh=min(minh,dis[y]+edge[j].w-dis[i]);
                    }
                }
        }
        if(minh==INF) return 0;
        rep(i,S,T) if(v[i]) dis[i]+=minh;           //利用距离标号控制最短路条件
        return 1;
    }
    inline void zwk()
    {
        do
        {
            do
            {
                rep(i,S,T) v[i]=0;
            }while(aug(S,INF));
        }while(modlabel());
    }
    inline void init()
    {
        memset(pointer,-1,sizeof(pointer));
        scanf("%d%d%d%d%d%d",&N,&p,&m,&f,&n,&s);
        S=0;T=2*N+1;
        int ri;
        rep(i,1,N)
        {
            scanf("%d",&ri);
            addedge(S,i,ri,0);
            addedge(N+i,T,ri,0);
            addedge(S,N+i,INF,p);
            if(i+m<=N) addedge(i,N+i+m,INF,f);
            if(i+n<=N) addedge(i,N+i+n,INF,s);
            if(i<N) addedge(i,i+1,INF,0);
        }
    }
    int main()
    {
        freopen("napk10.in","r",stdin);
        init();
        zwk();
        printf("%lld
    ",cost);
        return 0;
    }
  • 相关阅读:
    (五)TortoiseSVN 客户端-----安装
    (四)svn 服务器端的使用之创建工程目录
    (三)svn 服务器端之创建仓库
    (二)svn服务端安装配置
    (一)svn介绍
    JFinal常量配置学习笔记
    继承、多态、重载和重写
    聊聊基本类型(内置类型)
    日期和时间的处理
    设计模式——享元模式
  • 原文地址:https://www.cnblogs.com/zhixingr/p/7612236.html
Copyright © 2011-2022 走看看