zoukankan      html  css  js  c++  java
  • Apollo代码学习(七)—MPC与LQR比较

    前言

    Apollo中用到了PID、MPC和LQR三种控制器,其中,MPC和LQR控制器在状态方程的形式、状态变量的形式、目标函数的形式等有诸多相似之处,因此结合自己目前了解到的信息,将两者进行一定的比较。

    MPC( Model predictive control, 模型预测控制 ) 和 LQR( Linear–quadratic regulator,线性二次调解器 ) 在状态方程、控制实现等方面,有很多相似之处,但也有很多不同之处,如工作时域、最优解等,基于各自的理论基础,从研究对象、状态方程、目标函数、求解方法等方面, 对MPC和LQR做简要对比分析。对MPC的详细讲解请参考我的上一篇博文:Apollo代码学习(六)—模型预测控制(MPC)

    本文主要参考内容:
    【1】龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京理工大学出版社, 2014.
    【2】Model predictive control-Wikipedia
    【3】Linear–quadratic regulator-Wikipedia
    【4】Inverted Pendulum: State-Space Methods for Controller Design
    【5】王金城. 现代控制理论[M]. 化学工业出版社, 2007.

    研究对象

    LQR的研究对象是现代控制理论中以状态空间方程形式给出的线性系统。MPC的研究对象可以是线性系统,也可以是非线性系统,只不过为了某些需求,如时效性,计算的便捷,操控性等,一般会将非线性系统转换为线性系统进行计算。非线性系统的线性化可参考上一篇文章

    Apollo中,LQR和MPC控制器都选用的单车动力学模型作为研究对象,单车动力学模型为非线性系统,但LQR和MPC控制器的目的是为了求最优控制解,在具体的优化求解时,均通过线性化方法将状态方程转化为线性方程进行求解,所以,可以说apollo中LQR和MPC控制器的研究对象均为线性系统。

    状态方程

    LQR的状态方程多以微分方程的形式给出,如:
    (1) x ˙ = A x + B u dot{x}=Ax+Bu ag{1}x˙=Ax+Bu(1)
    是一个连续线性系统,在计算过程中需要转换为如公式3的离散线性系统。
    MPC的状态方程可以为线性系统,可以为非线性系统,非线性系统形如下:
    (2) ξ ˙ = f ( ξ , u ) dot{xi}=f(xi,u) ag{2}ξ˙=f(ξ,u)(2)

    线性系统如公式3所示:
    (3) x ( t + 1 ) = A x ( t ) + B u ( t ) x(t+1)=Ax(t)+Bu(t) ag{3}x(t+1)=Ax(t)+Bu(t)(3)
    但LQR和MPC在计算求解时基本都是基于离散线性方程计算的。公式1可以很方便的转化为公式2的形式。离散化的方法可参考上一篇文章:Apollo代码学习(六)—模型预测控制(MPC)

    工作时域

    按照维基百科的说法:

    The main differences between MPC and LQR are that LQR optimizes in a fixed time window (horizon) whereas MPC optimizes in a receding time window, and that a new solution is computed often whereas LQR uses the single (optimal) solution for the whole time horizon.

    LQR在一个固定的时域上求解,且一个时域内只有一个最优解,而MPC在一个逐渐消减的时域内( in a receding time window )求解最优解,且最优解经常更新。
    可以结合MPC的滚动优化,以及图1进行理解:

    图1 MPC和LQR的工作时域

    针对同一工作时域[ t , t + N ] [t, t+N][t,t+N],LQR在该时域中,有唯一最优控制解u ∗ ( t ) u^*(t)u(t),而MPC仅在t tt时刻有最优解u ∗ ( t ) u^*(t)u(t),但它会计算出一个控制序列U ( t ) U(t)U(t),并仅将序列的第一个值u ∗ ( t ) u^*(t)u(t)作为控制量输出给控制系统,然后在下一采样时间结合车辆当前状况求取下一个最优控制解u ∗ ( t + 1 ) u^*(t+1)u(t+1),这就是MPC所谓的滚动优化。这么做的目的是为了使控制效果在一定时间内可期,并且能根据控制效果尽早调整控制变量,使实际状态更切合期望状态。
    此外,LQR的工作时域可以拓展到无限大,即可以求取无限时域的最优控制解,当然,一般并不会这么用。而MPC只针对有限时域。

    目标函数

    优化求解问题一般离不开目标函数的设计。
    LQR的目标函数的一般形式为:
    (4) J = 1 2 x T ( t f ) Q 0 ( t ) x ( t f ) + 1 2 ∫ t 0 t f [ x T Q x + u t R u ] d t J=frac{1}{2}x^T(t_f)Q_0(t)x(t_f)+frac{1}{2}int_{t0}^{tf}[x^TQx+u^tRu]dt ag{4}J=21xT(tf)Q0(t)x(tf)+21t0tf[xTQx+utRu]dt(4)
    其中,x ( t f ) x(t_f)x(tf)为终端状态,Q 0 ( t ) Q_0(t)Q0(t)为正定的终端加权矩阵,x xx为状态变量,多为各种误差,u uu为控制变量,Q QQ为半正定的状态加权矩阵,R RR为正定的控制加权矩阵,实际应用中,Q 、 R Q、RQR多为对角矩阵。
    MPC的目标函数的一般形式为:
    (5) J = x ( t + N ) Q 0 x ( t + N ) + ∑ i = 1 N ( x ( t + i ∣ t ) T Q x ( t + i ∣ t ) + u ( t + i − 1 ) T R u ( t + i − 1 ) ) J=x(t+N)Q_0x(t+N)+sum_{i=1}^N(x(t+i|t)^TQx(t+i|t)+u(t+i-1)^TRu(t+i-1)) ag{5}J=x(t+N)Q0x(t+N)+i=1N(x(t+it)TQx(t+it)+u(t+i1)TRu(t+i1))(5)
    其中,x 、 u 、 Q 0 、 Q 、 R x、u、Q_0、Q、RxuQ0QR的定义同上。
    从形式上可以看出,LQR的目标函数为积分形式,MPC的目标函数为求和形式,但其实都是对代价的累计。两者第一部分均为终端代价函数,当系统对终端状态要求极严的情况下才添加,一般情况下可省略。x T Q x x^TQxxTQx项代表跟踪代价,表示跟踪过程中误差的大小,u T R u u^TRuuTRu项代表控制代价,表示对控制的约束或要求等。

    求解方法

    正如工作时域所述,针对同一工作时域,LQR有唯一最优控制解,也就是在该控制周期内,LQR只进行一次计算。而MPC滚动优化的思想,使其给出该时域内的一组控制序列对应不同的采样时刻(采样周期和控制周期不一定相同),但是只将该序列的第一个值输出给被控系统,作为该时刻的最优控制解。因此,对于工作时域[ t , t + N ] [t, t+N][t,t+N],LQR只有唯一解,MPC可能有N NN个解。

    最优控制解的求取多基于目标函数进行,取线性约束下的目标函数的极值为最优控制解。对于系统为线性,目标函数为状态变量和控制变量的二次型函数的线性二次性问题,一般线性二次性问题的最优解具有统一的解析表达式。apollo中的MPC将优化问题转化为二次规划问题,利用二次规划求解器进行求解。横向控制中用的是LQR调节器,它通过假设控制量u ( t ) u(t)u(t)不受约束,利用变分法求解。

    此外,LQR对整个时域进行优化求解,且求解过程中假设控制量不受约束,但是实际情况下,控制量是有约束的。而MPC通常在比整个时域更小的时间窗口中解决优化问题,因此可能获得次优解,且对线性不作任何假设,它能够处理硬约束以及非线性系统偏离其线性化工作点的迁移,这两者都是LQR的缺点。

    转载:https://blog.csdn.net/u013914471/article/details/84324754

  • 相关阅读:
    归并排序算法
    交换排序算法
    插入排序算法
    DASCTF2021五月赛
    第二届newsctf
    山西省赛
    2021广东省第一届网络安全竞赛
    2021 DozerCTF
    2021-HSCTF re
    buuctf-re (持续更新)
  • 原文地址:https://www.cnblogs.com/zhj868/p/13963421.html
Copyright © 2011-2022 走看看