-
Difficulty: Medium
-
Related Topics: Array, Hash Table
Description
Given an array of integers nums
and an integer k
, return the total number of continuous subarrays whose sum equals to k
.
给定一个整数数组 nums
和一个整数 k
,返回和为 k
的子数组的个数。
Examples
Example 1
Input: nums = [1,1,1], k = 2
Output: 2
Example 2
Input: nums = [1,2,3], k = 3
Output: 2
Constraints
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-1e7 <= k <= 1e7
Hints
-
Will Brute force work here? Try to optimize it.
暴力搜索管用吗?尝试优化它。 -
Can we optimize it by using some extra space?
我们能否通过使用一些额外空间优化它? -
What about storing sum frequencies in a hash table? Will it be useful?
把和的频率存储成哈希表怎么样?管用吗? -
sum(i,j)=sum(0,j)-sum(0,i), where sum(i,j) represents the sum of all the elements from index i to j-1. Can we use this property to optimize it.
sum(i, j) = sum(0, j) - sum(0, i),其中 sum(i, j) 表示数组从下标 i 到下标 j - 1 之间所有元素的和。我们能否借此优化算法?
Solution
按照提示所言,采用前缀和+哈希表的方式遍历数组,首先累加前缀和,如果前缀和 - k 在哈希表里存在了,则计入最后的结果,最后更新前缀和出现的频率,代码如下:
class Solution {
fun subarraySum(nums: IntArray, k: Int): Int {
val sumFreq = hashMapOf(0 to 1)
var prefix = 0
var result = 0
for (num in nums) {
prefix += num
if (sumFreq.containsKey(prefix - k)) {
result += sumFreq.getValue(prefix - k)
}
sumFreq[prefix] = sumFreq.getOrDefault(prefix, 0) + 1
}
return result
}
}