Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:其实由上到下和由下到上按照规则计算出来的和都是符合要求的。我们采取由下到上的顺序,初始化temp[]数组为triangle数组的最后一行。有以下状态转移方程成立:
temp[j]=min(temp[j],temp[j+1])+triangle[i][j] {i=row-2 -> 0}, 第i行计算出来的temp数组temp[j]表明从三角形最下面一行到三角形(i,j)位置的最小和。当计算到i=0时,temp[0]就是我们需要的最小和的值。
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { int row=triangle.size(); if(row==0) return 0; vector<int > temp(triangle[row-1].begin(),triangle[row-1].end()); for(int i=row-2;i>-1;i--){ int col=triangle[i].size(); for(int j=0;j<col;j++){ temp[j]=min(temp[j],temp[j+1])+triangle[i][j]; } } return temp[0]; } };