zoukankan      html  css  js  c++  java
  • project euler 12 Highly divisible triangular number

    
    
    Highly divisible triangular number
    
    
    Problem 12
    
    
    The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
    
    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
    
    Let us list the factors of the first seven triangle numbers:
    
     1: 1
     3: 1,3
     6: 1,2,3,6
    10: 1,2,5,10
    15: 1,3,5,15
    21: 1,3,7,21
    28: 1,2,4,7,14,28
    
    We can see that 28 is the first triangle number to have over five divisors.
    
    What is the value of the first triangle number to have over five hundred divisors?
    
    
    
    


    def
    divisor(num,j): count1 = 1 count2 = 1 if num%2 == 0: lst1 = [num//2] lst2 = [num+1] else: lst1 = [(num+1)//2] lst2 = [num] for i in range(2,lst1[0]): if lst1[0] % i ==0: count1 += 1 # print(i) lst1.append(i) for i in range(2,lst2[0]): if lst2[0] % i ==0: count2 += 1 lst2.append(i) count = count1 + count2 + count1*count2 return count n = 1 import time print(time.time()) while True: j = n*(n+1)//2 if str(j)[-1] != '0': #print(n) n += 1 continue count = divisor(n,j) # print(j,n,count) n += 1 if count >= 500: print(j,n,count) break print(time.time()) 1462342495.953848 76576500 12376 575 1462342499.651143

    约4S

    对求因子的算法进行一点改进,能提高一半效率。

        for i in range(2,lst1[0]//2+1):
    
    
        for i in range(2,lst2[0]//2+1):


    >>> 
    1462414510.288464
    76576500 12376 575
    1462414512.207313
    

    再次对求因子进行改进,效率提高10倍!!

        for i in range(2,int(sqrt(lst1[0])+1)):
            if lst1[0] % i ==0:
                count1 += 2
    1462415389.778016
    76576500 12376 575
    1462415389.91842
    >>> 


     

  • 相关阅读:
    Protocol Buffer详解
    RPC进阶篇
    RPC基础篇
    测试控制器
    更加简洁的tableview
    storyboard中Unwind segue使用
    IOS开发Apache服务器搭建
    IOS多线程操作
    IOS使用Svn的trunk、branches、tag分别的侧重
    在设计IOSapp时为了代码的扩展性可可维护性需要遵守的原则
  • 原文地址:https://www.cnblogs.com/zhourong1104/p/5458243.html
Copyright © 2011-2022 走看看