zoukankan      html  css  js  c++  java
  • 【kubeflow】kf-serving一些记载

    tensorflow

    启动脚本:

    apiVersion: "serving.kserve.io/v1beta1"
    kind: "InferenceService"
    metadata:
      labels:
        predict-phantom.amh-group.com/modelName: "lgb-test"
        predict-phantom.amh-group.com/modelVersion: "v1.2"
      name: "t"
    spec:
      predictor:
        maxReplicas: 1
        minReplicas: 1
        canaryTrafficPercent: 100
        tensorflow:
          resources:
            limits:
              memory: "4Gi"
              cpu: "8"
            requests:
              memory: "4Gi"
              cpu: "8"
          runtimeVersion: 2.3.0
          storageUri: "http://10.13.68.11/nfs/t-model.zip"

    模型信息接口:

    跟tensorflow-serving一致,地址为http://kf01:30000/v1/models/t/metadata

    host:t.default.amh-group.com

    预测接口:

    http://kf01:30000/v1/models/t:predict

    参数:

    {
        "inputs":{
            "x_k1":[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 405, 405, 405, 430, 430, 430, 430, 430, 430, 430, 430, 430, 430, 462, 462, 462, 462, 462, 462, 462, 462, 462, 462, 679, 679, 679, 679, 679]],
            "x_k2":[[75, 76, 74, 75, 0, 0, 1, 0, 0, 171, 188, 261, 2, 405, 405, 33, 430, 430, 679, 679, 679]],
            "x_k3":[[0, 0, 405, 430, 462, 679, 679, 679]],
            "x_v1":[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
            "x_v2":[[100.0999984741211, 4.199999809265137, 0, 0]],
            "x_v3":[[0.0, 0.0, 0.0, 0.0, -1.0]],
            "is_training":false
        }
    }

    模型格式:

    - 1

      - saved_model.pb

      - variables

    pytorch

    启动脚本:

    apiVersion: serving.kserve.io/v1beta1
    kind: InferenceService
    metadata:
      name: "torchserve"
    spec:
      predictor:
        pytorch:
          storageUri: gs://kfserving-examples/models/torchserve/image_classifier

    模型预测/解释:

    http://10.13.68.12:30000/v1/models/mnist:predict

    http://10.13.68.12:30000/v1/models/mnist:explain

    参数:

    {
      "instances": [
        {
          "data": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAAAw0lEQVR4nGNgGFggVVj4/y8Q2GOR83n+58/fP0DwcSqmpNN7oOTJw6f+/H2pjUU2JCSEk0EWqN0cl828e/FIxvz9/9cCh1zS5z9/G9mwyzl/+PNnKQ45nyNAr9ThMHQ/UG4tDofuB4bQIhz6fIBenMWJQ+7Vn7+zeLCbKXv6z59NOPQVgsIcW4QA9YFi6wNQLrKwsBebW/68DJ388Nun5XFocrqvIFH59+XhBAxThTfeB0r+vP/QHbuDCgr2JmOXoSsAAKK7bU3vISS4AAAAAElFTkSuQmCC",
          "target": 0
        }
      ]
    }

    参考文档https://github.com/kserve/kserve/tree/master/docs/samples/v1beta1/torchserve

    模型格式:

    ├── config
    │   ├── config.properties
    ├── model-store
    │   ├── densenet_161.mar
    │   ├── mnist.mar

    需要参考torchserve的模型导出,较复杂【TODO】

    PMML

    启动脚本

    apiVersion: "serving.kserve.io/v1beta1"
    kind: "InferenceService"
    metadata:
      name: "pmml-demo"
    spec:
      predictor:
        pmml:
          storageUri: http://10.13.68.11/nfs/model.pmml

    模型预测:

    http://10.13.68.12:30000/v1/models/pmml-demo:predict

    Host:pmml-demo.default.amh-group.com

    请求参数:

    {
        "predictions": [
            {
                "Species": "setosa",
                "Probability_setosa": 1.0,
                "Probability_versicolor": 0.0,
                "Probability_virginica": 0.0,
                "Node_Id": "2"
            }
        ]
    }

    自定义模型

    apiVersion: serving.kserve.io/v1beta1
    kind: InferenceService
    metadata:
      name: embedding-test
    spec:
      predictor:
        containers:
          - name: orochi
            image: 10.13.68.15:5000/orochi/embedding:v1

    需要注意的是,这个容器启动必须是一个rest服务

     

    修改域名

    https://knative.dev/docs/serving/using-a-custom-domain/

  • 相关阅读:
    json基础
    css语法以及css选择器
    HTML语义化标签
    CSS插入的四种方式
    Hibernate主键生成策略及选择
    HIbernate处理数据更新丢失
    数据库的四大特性以及事务的隔离级别
    MD5加密
    redis主从复制
    redis的持久化方案
  • 原文地址:https://www.cnblogs.com/zhouwenyang/p/15508096.html
Copyright © 2011-2022 走看看