zoukankan      html  css  js  c++  java
  • python-应用OpenCV和Python进行SIFT算法的实现

    如下图为进行测试的q和h,分别验证基于BFmatcher、FlannBasedMatcher等的SIFT算法

    代码如下:

    import numpy as np
    import cv2
    from matplotlib import pyplot as plt
    
    
    imgname1 = 'G:/q.jpg'
    imgname2 = 'G:/h.jpg'
    
    sift=cv2.xfeatures2d.SIFT_create()
    img1 = cv2.imread(imgname1)
    gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
    kp1, des1 = sift.detectAndCompute(img1,None)   #des是描述子
    
    img2 = cv2.imread(imgname2)
    
    gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)#灰度处理图像
    kp2, des2 = sift.detectAndCompute(img2,None)  #des是描述子
    
    #hmerge = np.hstack((gray1, gray2)) #水平拼接
    #cv2.imshow("gray", hmerge) #拼接显示为gray
    #cv2.waitKey(0)
    
    #img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255)) #画出特征点,并显示为红色圆圈
    #img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255)) #画出特征点,并显示为红色圆圈
    
    #hmerge = np.hstack((img3, img4)) #水平拼接
    #cv2.imshow("point", hmerge) #拼接显示为gray
    #cv2.waitKey(0)
    
    # BFMatcher解决匹配
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(des1,des2, k=2)
    # 调整ratio
    good = []
    for m,n in matches:
        if m.distance < 0.75*n.distance:
            good.append([m])
    
    img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
    
    cv2.imshow("BFmatch", img5)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    效果如下:

  • 相关阅读:
    使用Astah画UML类图经验总结
    Qt的四个常见的图像叠加模式
    获取Linux时间函数
    DBus学习网站
    线程属性pthread_attr_t简介
    Secure CRT 自动记录日志log配置
    MySQL的group_concat()函数合并多行数据
    MySQL的Limit详解
    异步查询json传日期格式到前台,变成了时间戳的格式
    启动studio报错Gradle error
  • 原文地址:https://www.cnblogs.com/zhouxuejia/p/10990471.html
Copyright © 2011-2022 走看看