题目链接:http://poj.org/problem?id=1681
异或高斯消元。如果是唯一解,则直接拿解与初始状态比较。如果有多解,则枚举自由变元的的取值情况,最坏复杂度O( 2^N )。
1 //STATUS:C++_AC_16MS_496KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //using namespace __gnu_cxx; 25 //define 26 #define pii pair<int,int> 27 #define mem(a,b) memset(a,b,sizeof(a)) 28 #define lson l,mid,rt<<1 29 #define rson mid+1,r,rt<<1|1 30 #define PI acos(-1.0) 31 //typedef 32 typedef long long LL; 33 typedef unsigned long long ULL; 34 //const 35 const int N=300; 36 const int INF=0x3f3f3f3f; 37 const int MOD=100000,STA=8000010; 38 const LL LNF=1LL<<60; 39 const double EPS=1e-8; 40 const double OO=1e15; 41 const int dx[4]={-1,0,1,0}; 42 const int dy[4]={0,1,0,-1}; 43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 44 //Daily Use ... 45 inline int sign(double x){return (x>EPS)-(x<-EPS);} 46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 49 template<class T> inline T Min(T a,T b){return a<b?a:b;} 50 template<class T> inline T Max(T a,T b){return a>b?a:b;} 51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 55 //End 56 57 char ma[N][N]; 58 int A[N][N],B[N],vis[N],num[N]; 59 int T,n; 60 61 void getA(int n,int m) 62 { 63 int i,j,k,x,y; 64 mem(A,0); 65 for(i=0;i<n;i++){ 66 for(j=0;j<m;j++){ 67 A[i*m+j][i*m+j]=1; 68 for(k=0;k<4;k++){ 69 x=i+dx[k]; 70 y=j+dy[k]; 71 if(x>=0&&x<n && y>=0&&y<m){ 72 A[i*m+j][x*m+y]=1; 73 } 74 } 75 } 76 } 77 for(i=0;i<n;i++){ 78 for(j=0;j<m;j++) 79 A[i*m+j][n*m]=ma[i][j]; 80 } 81 } 82 83 int gauss(int n) 84 { 85 int i,j,k,cnt,row,ok,ret,up,free; 86 for(i=row=0;i<n;i++){ 87 if(!A[row][i]){ 88 for(j=row+1;j<n;j++){ 89 if(A[j][i]){ 90 for(k=i;k<=n;k++)swap(A[row][k],A[j][k]); 91 break; 92 } 93 } 94 } 95 if(A[row][i]!=1)continue; 96 for(j=0;j<n;j++){ 97 if(j!=row && A[j][i]){ 98 for(k=i;k<=n;k++) 99 A[j][k]^=A[row][k]; 100 } 101 } 102 row++; 103 } 104 for(i=n-1;i>=row;i--) 105 if(A[i][n])return -1; 106 if(row==n){ 107 ret=0; 108 for(i=0;i<n;i++)if(A[i][n])ret++; 109 return ret; 110 } 111 mem(vis,0); 112 for(i=k=j=0;i<row;i++){ 113 while(!A[i][j] && j<n){ 114 vis[j]=1; 115 num[k++]=j++; 116 } 117 } 118 ret=INF;free=n-row; 119 up=1<<free; 120 for(k=0;k<up;k++){ 121 for(i=0;i<free;i++)B[num[i]]=(k&(1<<i))?1:0; 122 for(i=n-1;i>=0;i--){ 123 if(!vis[i])continue; 124 B[i]=0; 125 for(j=row;j<n;j++)B[i]^=B[j]*A[i][j]; 126 B[i]^=A[i][n]; 127 } 128 for(i=cnt=0;i<n;i++)if(B[i])cnt++; 129 ret=Min(ret,cnt); 130 } 131 return ret; 132 } 133 134 int main() 135 { 136 // freopen("in.txt","r",stdin); 137 int i,j,ans; 138 scanf("%d",&T); 139 while(T--) 140 { 141 scanf("%d",&n); 142 for(i=0;i<n;i++){ 143 scanf("%s",ma[i]); 144 for(j=0;j<n;j++)ma[i][j]=(ma[i][j]=='y'?0:1); 145 } 146 getA(n,n); 147 148 ans=gauss(n*n); 149 if(ans>=0)printf("%d\n",ans); 150 else printf("inf\n"); 151 } 152 return 0; 153 }