zoukankan      html  css  js  c++  java
  • SGU275 To xor or not to xor 高斯消元

      题目连接:http://acm.sgu.ru/problem.php?contest=0&problem=275

      题意:给n个数字,从中选取某些数字进行XOR操作,使得值最大。

      肯定要把每个数字转化为二进制的形式。在XOR操作的时候,首先优先高位,如果高位能取得 1 ,那么就一定要取 1 ,这其中肯定有很多情况,我们并不要求出每种情况去扩展,因为状态太多了,只要判断有没有满足的情况就可以了。这里就是异或高斯消元了。假设现在是判断第 i 位,那么首先把A[i][n]赋值为 1,如果在当前方程下有解,那么继续地位,否则把A[i][n]赋值为0,继续低位。

      1 //STATUS:C++_AC_15MS_943KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //using namespace __gnu_cxx;
     25 //define
     26 #define pii pair<int,int>
     27 #define mem(a,b) memset(a,b,sizeof(a))
     28 #define lson l,mid,rt<<1
     29 #define rson mid+1,r,rt<<1|1
     30 #define PI acos(-1.0)
     31 //typedef
     32 typedef long long LL;
     33 typedef unsigned long long ULL;
     34 //const
     35 const int N=110;
     36 const int INF=0x3f3f3f3f;
     37 const int MOD=100000,STA=8000010;
     38 const LL LNF=1LL<<60;
     39 const double EPS=1e-8;
     40 const double OO=1e15;
     41 const int dx[4]={-1,0,1,0};
     42 const int dy[4]={0,1,0,-1};
     43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     44 //Daily Use ...
     45 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     49 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     50 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     55 //End
     56 
     57 int A[N][N];
     58 LL num[N];
     59 int n;
     60 
     61 int gauss(int n,int m)
     62 {
     63     int i,j,k,cnt,row;
     64     for(i=row=0;i<n;i++){
     65         if(!A[row][i]){
     66             for(j=row+1;j<m;j++){
     67                 if(A[j][i]){
     68                     for(k=i;k<=n;k++)swap(A[row][k],A[j][k]);
     69                     break;
     70                 }
     71             }
     72         }
     73         if(A[row][i]!=1)continue;    //保证为严格的阶梯矩阵
     74         for(j=0;j<m;j++){    //从0开始,高斯约当消元
     75             if(j!=row && A[j][i]){
     76                 for(k=i;k<=n;k++)
     77                     A[j][k]^=A[row][k];
     78             }
     79         }
     80         row++;
     81     }
     82     for(i=m-1;i>=row;i--)
     83         if(A[i][n])return 0;   //无解
     84     return 1;
     85 }
     86 
     87 int main()
     88 {
     89  //   freopen("in.txt","r",stdin);
     90     int i,j;
     91     LL ans;
     92     while(~scanf("%d",&n))
     93     {
     94         for(i=0;i<n;i++)
     95             scanf("%I64d",&num[i]);
     96         ans=0;
     97         for(i=60;i>=0;i--){
     98             for(j=0;j<n;j++)
     99                 A[60-i][j]=(num[j]&((LL)1<<i))?1:0;
    100             A[60-i][n]=1;
    101             
    102             if(gauss(n,60-i+1))ans|=(LL)1<<i;
    103             else A[60-i][n]=0;
    104         }
    105 
    106         printf("%I64d\n",ans);
    107     }
    108     return 0;
    109 }
  • 相关阅读:
    题解CF566D Restructuring Company
    题解CF986F Oppa Funcan Style Remastered
    题解P2371 [国家集训队]墨墨的等式
    题解 CF1203D2 Remove the Substring (hard version)
    题解 CF1202D Print a 1337-string...
    ubuntu apt-get install php
    jwt refresh token
    读过的laravel文章
    delete all untracked files
    自定义UserProvider,更改验证方法
  • 原文地址:https://www.cnblogs.com/zhsl/p/3120042.html
Copyright © 2011-2022 走看看