题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4664
题意:一个平面上有n个点(一个凸多边形的顶点),每次可以连接一个平面上的两个点(不能和已经连接的边相交),如果平面上已经出现了一个三角形,则不能在这个平面上继续连接边了。
首先在最优情况下,优先考虑的是一个点不连两条直线,否则就直接输了。因此一个n个点的局面连了一条直线后,分为了两个子游戏,i个点和n-i-2个点,则sg[n]=mex(sg[n]^sg[n-i-2])。然后打表找规律,发现大于n大于68后就是34的循环节了。
1 //STATUS:C++_AC_203MS_428KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 #pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=110; 37 const int INF=0x3f3f3f3f; 38 const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int sg[N]; 59 int vis[N]; 60 int T,n; 61 62 void Init() 63 { 64 int i,j; 65 sg[1]=sg[0]=0; 66 int n=110; 67 for(i=2;i<n;i++){ 68 mem(vis,0); 69 for(j=0;i-j-2>=0;j++)vis[sg[j]^sg[i-j-2]]=1; 70 for(j=0;vis[j];j++); 71 sg[i]=j; 72 } 73 } 74 75 inline int getsg(int a) 76 { 77 return a<=68?sg[a]:sg[68+(a%34?a%34:34)]; 78 } 79 80 int main(){ 81 // freopen("in.txt","r",stdin); 82 int i,j,sg,a; 83 scanf("%d",&T); 84 Init(); 85 while(T--) 86 { 87 scanf("%d",&n); 88 sg=0; 89 while(n--){ 90 scanf("%d",&a); 91 sg=sg^getsg(a); 92 } 93 94 printf("%s ",sg?"Carol":"Dave"); 95 } 96 return 0; 97 }