题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1987
题意:给定n条线段,每两条线段要么满足没有公共部分,要么包含。给出m个询问,求当前点被覆盖的最小长度的线段编号。
由于线段不存在部分相交的情况,因此,直接按照输入顺序覆盖区间就可以了,因为后覆盖的线段更短。
1 //STATUS:C++_AC_187MS_6805KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=100010; 37 const int INF=0x3f3f3f3f; 38 const int MOD=95041567,STA=8000010; 39 const LL LNF=1LL<<60; 40 const double EPS=1e-8; 41 const double OO=1e15; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int c[(N*3)<<2],t[N][2],q[N],id[N*3]; 59 int n; 60 61 void pushdown(int rt) 62 { 63 if(c[rt]!=-1) 64 c[rt<<1]=c[rt<<1|1]=c[rt]; 65 } 66 67 void pushup(int rt) 68 { 69 if(c[rt<<1]==c[rt<<1|1]) 70 c[rt]=c[rt<<1]; 71 else c[rt]=-1; 72 } 73 74 void update(int l,int r,int rt,int L,int R,int val) 75 { 76 if(L<=l && r<=R){ 77 c[rt]=val; 78 return; 79 } 80 pushdown(rt); 81 int mid=(l+r)>>1; 82 if(L<=mid)update(lson,L,R,val); 83 if(R>mid)update(rson,L,R,val); 84 pushup(rt); 85 } 86 87 int query(int l,int r,int rt,int w) 88 { 89 if(l==r){ 90 return c[rt]; 91 } 92 pushdown(rt); 93 int mid=(l+r)>>1,ret; 94 if(w<=mid)ret=query(lson,w); 95 else ret=query(rson,w); 96 pushup(rt); 97 return ret; 98 } 99 100 int main() 101 { 102 // freopen("in.txt","r",stdin); 103 int i,j,k,L,R,m; 104 while(~scanf("%d",&n)) 105 { 106 k=0; 107 for(i=1;i<=n;i++){ 108 scanf("%d%d",&t[i][0],&t[i][1]); 109 id[k++]=t[i][0]; 110 id[k++]=t[i][1]; 111 } 112 scanf("%d",&m); 113 for(i=0;i<m;i++){ 114 scanf("%d",&q[i]); 115 id[k++]=q[i]; 116 } 117 sort(id,id+k); 118 k=unique(id,id+k)-id; 119 mem(c,-1); 120 for(i=1;i<=n;i++){ 121 L=lower_bound(id,id+k,t[i][0])-id+1; 122 R=lower_bound(id,id+k,t[i][1])-id+1; 123 update(1,k,1,L,R,i); 124 } 125 126 for(i=0;i<m;i++){ 127 printf("%d ",query(1,k,1,lower_bound(id,id+k,q[i])-id+1)); 128 } 129 } 130 return 0; 131 }