zoukankan      html  css  js  c++  java
  • HDU-2888 Check Corners 二维RMQ

      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2888

      模板题。解题思路如下(转载别人写的):

    dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
    这是RMQ-ST算法的核心: 倍增思想
    == min( [row,row+ 2^(i-1)-1]x[col,col+2^j-1], [row+2^(i-1),row+2^i-1]x[col,col+2^j-1] )
    = min(dp[row][col][i-1][j], dp[row+(1<<(i-1))][col][i-1][j] )
    //y轴不变,x轴二分 (i!=0)

    == min( [row,row+2^i-1]x[col,col+2^(j-1)-1],  [row,row+2^i-1]x[col+2^(i-1),col+2^j-1] )
    = min(dp[row][col][i][j-1], dp[row][col+(1<<(j-1))][i][j-1] ) 
    //x轴不变,y轴二分 (j!=0)
    即:
    dp[row][col][i][j] = min(dp[row][col][i-1][j], dp[row + (1<<(i-1))][col][i-1][j] )   
                 或    = min(dp[row][col][i][j-1], dp[row][col+(1<<(j-1))][i][j-1] )
    查询[x1,x2]x[y1,y2]
    令 kx = (int)log2(x2-x1+1);
       ky = (int)log2(y2-y1+1);
    查询结果为
       m1 = dp[x1][y1][kx][ky]                    = dp[x1][y1][kx][ky];
       m2 = dp[x2-2^kx+1][y1][kx]ky]              = dp[x2-(1<<kx)+1][y1][kx][ky];
       m3 = dp[x1][y2-2^ky+1][kx][ky]             = dp[x1][y2-(1<<ky)+1][kx][ky];
       m4 = dp[x2-2^kx+1][y2-2^ky+1][kx][ky]      = dp[x2-(1<<kx)+1][y2-(1<<ky)+1][kx][ky];

    结果 = min(m1,m2,m3,m4)

      1 //STATUS:C++_AC_4109MS_30160KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef long long LL;
     34 typedef unsigned long long ULL;
     35 //const
     36 const int N=310;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=1e+7,STA=8000010;
     39 const LL LNF=1LL<<60;
     40 const double EPS=1e-8;
     41 const double OO=1e15;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 int val[N][N],dp[N][N][9][9];
     58 int n,m,Q;
     59 void init()
     60 {
     61     for(int row = 1; row <= n; row++)
     62         for(int col = 1; col <=m; col++)
     63             dp[row][col][0][0] = val[row][col];
     64     int mx = log(double(n)) / log(2.0);
     65     int my = log(double(m)) / log(2.0);
     66     for(int i=0; i<= mx; i++)
     67     {
     68         for(int j = 0; j<=my; j++)
     69         {
     70             if(i == 0 && j ==0) continue;
     71             for(int row = 1; row+(1<<i)-1 <= n; row++)
     72             {
     73                 for(int col = 1; col+(1<<j)-1 <= m; col++)
     74                 {
     75                     if(i == 0)//y轴二分
     76                         dp[row][col][i][j]=max(dp[row][col][i][j-1],dp[row][col+(1<<(j-1))][i][j-1]);
     77                     else//x轴二分
     78                         dp[row][col][i][j]=max(dp[row][col][i-1][j],dp[row+(1<<(i-1))][col][i-1][j]);
     79                 }
     80             }
     81         }
     82     }
     83 }
     84 int RMQ2D(int x1,int y1,int x2,int y2)
     85 {
     86     int kx = log(double(x2-x1+1)) / log(2.0);
     87     int ky = log(double(y2-y1+1)) / log(2.0);
     88     int m1 = dp[x1][y1][kx][ky];
     89     int m2 = dp[x2-(1<<kx)+1][y1][kx][ky];
     90     int m3 = dp[x1][y2-(1<<ky)+1][kx][ky];
     91     int m4 = dp[x2-(1<<kx)+1][y2-(1<<ky)+1][kx][ky];
     92     return max( max(m1,m2) , max(m3,m4));
     93 }
     94 //END
     95 int main()
     96 {
     97  //   freopen("in.txt","r",stdin);
     98     int i,j,ans;
     99     int x1,y1,x2,y2;
    100     while(~scanf("%d%d",&n,&m))
    101     {
    102         for(i=1;i<=n;i++)
    103             for(j=1;j<=m;j++)
    104                 scanf("%d",&val[i][j]);
    105         init();
    106         scanf("%d",&Q);
    107         while(Q--){
    108             scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
    109             ans=RMQ2D(x1,y1,x2,y2);
    110             if(ans==val[x1][y1] || ans==val[x2][y2]
    111                || ans==val[x1][y2] || ans==val[x2][y1]){
    112                 printf("%d yes
    ",ans);
    113             }
    114             else printf("%d no
    ",ans);
    115         }
    116     }
    117     return 0;
    118 }
  • 相关阅读:
    Azkaban 简介(一)
    大数据平台搭建(Ambari +HDP)
    大数据平台比较-CDH、HDP、CDP
    Kylin 操作使用(六)
    Kylin 安装部署(五)
    Kylin 核心概念(四)
    数据流图
    android:sharedUserId
    Android的uid与UserHandle
    C++ 多态
  • 原文地址:https://www.cnblogs.com/zhsl/p/3578693.html
Copyright © 2011-2022 走看看