zoukankan      html  css  js  c++  java
  • R 语言入门(Ubuntu)

    安装,启动,退出:

    # 安装
    sudo
    apt-get install r-base r-base-dev
    # 启动
    R
    # 退出
    q()

     安装package:

    install.packages("randomForest")
    install.views("MachineLearning")
    RSiteSearch("confusion", restrict = "functions")

     加载package:

    library(randomForest)
    # 查看已经加载的package的信息
    sessionInfo()

    创建对象:

    pages <- 97
    town <- "Richmond"

    基本数据类型和结构:

    if 3 > 2 print("greater") else print("less")
    isGreater <- 3 > 2
    isGreater
    is.logical(isGreater)
    x <- 3.6
    is.numeric(x)
    is.integer(x)
    is.double(x)
    typeof(x)
    y <- "your ad here"
    typeof(y)
    # length of y
    nchar(y)
    # determine if a substring exists in the character string
    grep("ad", y)
    grep("my", y)

    # vector, c is for combine
    weights <- c(90, 150, 111, 123)
    is.vector(weights)
    typeof(weights)
    length(weights)
    # [1] 90.25 150.25 111.25 123.25
    weights + .25
    mean(weights)

    #string vector
    colors <- c("green", "red", "blue", "red", "white")
    grep("red", colors)
    nchar(colors)

    # index
    weights[c(1, 4)]

    # A vector of logical values can be used also but there should
    # be as many logical values as elements
    weights[c(TRUE, TRUE, FALSE, TRUE)]

    #missing value
    probabilities <- c(.05, .67, NA, .32, .90)
    is.na(probabilities)
    mean(probabilities) #[1] NA ... unless told otherwise
    mean(probabilities, na.rm = TRUE) # [1] 0.485
     

    数据集操作,matrix, data frames:

    mat <- matrix(1:12, nrow = 3)
    rownames(mat) <- c("row 1", "row 2", "row 3")
    colnames(mat) <- c("col1", "col2", "col3", "col4")
    #      col1 col2 col3 col4
    #row 1  1    4    7    10
    #row 2  2    5    8    11
    #row 3  3    6    9    12
    
    mat[1, 2:3]
    # col2 col3
    # 4 7
    
    mat["row 1", "col3"]
    mat[1,]
    #col1 col2 col3 col4
    #1 4 7 10
    is.matrix(mat[1,])
    # [1] FALSE
    is.vector(mat[1,])
    # [1] TRUE
    
    mat[1,,drop = FALSE]
    #col1 col2 col3 col4
    #row 1 1 4 7 10
    
    is.matrix(mat[1,,drop = FALSE])
    # [1] TRUE
    
    is.vector(mat[1,,drop = FALSE])
    #[1] FALSE
    df <- data.frame(colors = colors2, time = 1:5)
    # colors time
    # 1 green 1
    # 2 red 2
    # 3 blue 3
    # 4 red 4
    # 5 white 5
    
    dim(df)
    #[1] 5 2
    
    colnames(df)
    # [1] "colors" "time“
    rownames(df)
    [1] "1" "2" "3" "4" "5"
    
    df$colors
    # [1] green red blue red white
    # Levels: blue green red white
    
    subset(df, colors %in% c("red", "green") & time <= 2)
    #colors time
    #1 green 1
    #2 red 2
    
    df2 <- df
    # Add missing values to the data frame
    df2[1, 1] <- NA
    df2[5, 2] <- NA
    #colors time
    #1 <NA> 1
    #2 red 2
    #3 blue 3
    #4 red 4
    #5 white NA
    
    complete.cases(df2)
    #[1] FALSE TRUE TRUE TRUE FALSE

    读取csv文件:

    read.csv("data.csv")
    read.csv(header = FALSE, file = "data.csv")
    read.csv("data.csv", na.strings = "?")
  • 相关阅读:
    访问者模式
    中介者模式
    策略模式
    迭代器模式
    责任链模式
    contentProvider模板
    android studio常用快捷键(不断补充)
    jqgrid表格列动态加载的实现
    Android View.onMeasure方法的理解(转载)
    activity的生命周期
  • 原文地址:https://www.cnblogs.com/zhuangliu/p/7072793.html
Copyright © 2011-2022 走看看