zoukankan      html  css  js  c++  java
  • LeetCode

    Container With Most Water

    2014.2.8 21:37

    Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

    Note: You may not slant the container.

    Solution:

      A very plain solution is to do a O(n^2) scan, check out every pair of (a[i], a[j]) and find out the maximal min(a[i], a[j]) * (i - j).

      You know this is far from satisfactory, so let's try to find an O(n) solution.

      Suppose we've got a candidate pair (a[x], a[y]), the result is min(a[x], a[y]) * (x - y). If it is currently the optimal candidate, there cannot be any a[k] >= a[x] left of a[x], or any a[k] >= a[y] right of a[y], think about why.

      If we are to find a better solution (a[x'], a[y']), it must lie within the interval (x, y), and satify the condition (a[x'] > a[x] && a[y'] >= a[y]) or (a[x'] >= a[x] && a[y'] > a[y]).

      This means we can scan the array from both ends in one pass, and end the algorithm when both iteraotors meet in the middle.

      Time complexity is O(n), space complexity is O(1).

    Accepted code:

     1 // 1CE, 1AC, good.
     2 #include <algorithm>
     3 using namespace std;
     4 
     5 class Solution {
     6 public:
     7     int maxArea(vector<int> &height) {
     8         if (height.empty()) {
     9             return 0;
    10         }
    11         
    12         int ll, rr, kk, result;
    13         
    14         ll = 0;
    15         rr = (int)height.size() - 1;
    16         result = 0;
    17         while (ll < rr) {
    18             result = max(result, min(height[ll], height[rr]) * (rr - ll));
    19             if (height[ll] < height[rr]) {
    20                 kk = ll + 1;
    21                 while (kk < rr && height[kk] <= height[ll]) {
    22                     ++kk;
    23                 }
    24                 ll = kk;
    25             } else {
    26                 kk = rr - 1;
    27                 while (kk > ll && height[kk] <= height[rr]) {
    28                     --kk;
    29                 }
    30                 rr = kk;
    31             }
    32         }
    33         
    34         return result;
    35     }
    36 };
  • 相关阅读:
    Docker 私有仓库搭建
    事务提交与不同数据库的自增方式
    多环境切换&&注解方式&&增删改返回值问题
    查询缓存&&逆向工程
    Mybatis整合Log4j、延迟加载
    关联查询
    MyBatis实现动态SQL
    输出参数resultType
    MyBatis调用存储过程执行CRUD
    两种取值符号的异同
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3541097.html
Copyright © 2011-2022 走看看