http://acm.hdu.edu.cn/showproblem.php?pid=5791
Two
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2599 Accepted Submission(s): 1111
Problem Description
Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
Input
The input contains multiple test cases.
For each test case, the first line cantains two integers N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
For each test case, the first line cantains two integers N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
Output
For each test case, output the answer mod 1000000007.
Sample Input
3 2
1 2 3
2 1
3 2
1 2 3
1 2
Sample Output
2
3
Author
ZSTU
Source
Recommend
题目分析:
HDU多校第五场的1011。
题目大意是有两个序列,其长度为n和m。求他们的子序列相同的个数。
DP题,推导公式,dp[i][j]表示在第一个序列前i个位置和第二个序列前j个位置下,有多少种子序列相同情况。
可以推出,如果某个第一个序列的i位置与第二个序列j位置元素不同,其dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]。
将i和j分开看,如果没有i,第一个序列前i-1个与第二个序列前j个有多少种相同的,和第一个序列前i个与第二个序列前j-1个有多少相同。同时,需要减掉dp[i-1][j-1],因为在之前将第一个序列前i-1和第二个序列前j-1计算了两边。
如果第一个序列i位置与第二个序列j位置元素相同,需要加上i与j相同的一个之外,还需要加上dp[i-1][j-1],因为dp[i-1][j-1]可以与i配对相同,也可以与j配对相同,于是就需要重复计算一次。
dp[i][j]=dp[i-1][j]+dp[i][j-1]+1。(实际上对于最后相等的话,算上最后一对就有a[i - 1][j - 1] + 1种(肯定比a[i-1][j - 1多一种),不算的话,则是a[i-1][j] + a[i][j - 1] - a[i - 1][j - 1])
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; int a[1005]; int b[1005]; long long dp[1005][1005]; int mod = 1000000007; long long find(int i, int j){ if(i < 0 || j < 0) return 0; if(dp[i][j] != -1){ //如果是 != 0 会TLE!!! 因为这个题就算搜索过也有大量为0的情况,故初始化的初始值要避免用0 return dp[i][j]; } if(a[i] == b[j]){ return dp[i][j] = (find(i - 1, j) + find(i, j - 1) + 1) % mod; //这里实际上是还有 + find(i-1,j-1) - find(i-1,j-1); } else{ return dp[i][j] = (find(i - 1, j) + find(i, j - 1) - find(i - 1, j - 1) + mod) % mod; //加一个mod防止有负的 } } int main(){ // std::ios::sync_with_stdio(false); int n, m; while(cin >> n >> m){ memset(dp, -1, sizeof(dp)); for(int i = 0; i < n; i++){ cin >> a[i]; // scanf("%d", &a[i]); } for(int j = 0; j < m; j++) cin >> b[j]; // scanf("%d", &b[j]); cout << find(n - 1, m - 1) << endl; } return 0; }