zoukankan      html  css  js  c++  java
  • 1-熵值法赋权

    转载:https://blog.csdn.net/zhanghao12_34/article/details/79406211

    一、基本原理
    在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。
    根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。
    二、熵值法步骤
    1. 选取n个国家,m个指标,则为第i个国家的第j个指标的数值(i=1, 2…, n; j=1,2,…, m);
    2. 指标的归一化处理:异质指标同质化
    由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此,对于高低指标我们用不同的算法进行数据标准化处理。其具体方法如下:
    正向指标:
    负向指标:
    为第i个国家的第j个指标的数值(i=1, 2…, n; j=1, 2,…, m)。为了方便起见,归一化后的数据仍记为;
    3. 计算第j项指标下第i个国家占该指标的比重:
    4. 计算第j项指标的熵值:
    其中. 满足;
    5. 计算信息熵冗余度:
    6. 计算各项指标的权值:
    7. 计算各国家的综合得分:
    function [s, w] = shang(x)
    % x为原始数据矩阵, 一行代表一个记录, 每列对应一个指标
    % s各行得分, w各列权重
    [n,m]=size(x); % n=23个记录, m=5个指标
    % 数据的归一化处理
    % Matlab2010b,2011a,b版本都有bug,需如下处理. 其它版本直接用[X,ps]=mapminmax(x',0,1);即可
    [X,ps]=mapminmax(x');
    ps.ymin=0.002; % 归一化后的最小值
    ps.ymax=0.996; % 归一化后的最大值
    ps.yrange=ps.ymax-ps.ymin; % 归一化后的极差,若不调整该值, 则逆运算会出错
    X=mapminmax(x',ps);
    % mapminmax('reverse',xx,ps); % 反归一化, 回到原数据
    % [X,ps]=mapminmax(x',0,1);
    X=X';  % X为归一化后的数据, 23行, 5列(指标)
    % 计算第j个指标下,第i个记录占该指标的比重p(i,j)
    for i=1:n
        for j=1:m
            p(i,j)=X(i,j)/sum(X(:,j));
        end
    end
    % 计算第j个指标的熵值e(j)
    k=1/log(n);
    for j=1:m
        e(j)=-k*sum(p(:,j).*log(p(:,j)));
    end
    d=ones(1,m)-e;  % 计算信息熵冗余度
    w=d./sum(d);    % 求权值w
    s=w*p';         % 求综合得分
    end
    

      

    测试程序:

    data.txt 数据如下:
    114.6 1.1 0.71 85.0 346 
    55.3 0.96 0.4 69.0 300
    132.4 0.97 0.54 73.0 410 
    152.1 1.04 0.49 77.0 433
    103.5 0.96 0.66 67.0 385 
    81.0 1.08 0.54 96.0 336
    179.3 0.88 0.59 89.0 446 
    29.8 0.83 0.49 120.0 289
    92.7 1.15 0.44 154.0 300 
    248.6 0.79 0.5 147.0 483
    115.0 0.74 0.65 252.0 453 
    64.9 0.59 0.5 167.0 402
    163.6 0.85 0.58 220.0 495 
    95.7 1.02 0.48 160.0 384
    139.5 0.70 0.59 217.0 478 
    89.9 0.96 0.39 105.0 314
    76.7 0.95 0.51 162.0 341 
    121.8 0.83 0.60 140.0 401
    42.1 1.08 0.47 110.0 326 
    78.5 0.89 0.44 94.0 280
    77.8 1.19 0.57 91.0 364 
    90.0 0.95 0.43 89.0 301
    100.6 0.82 0.59 83.0 456

    执行代码:
    [code]x=load('data.txt');  % 读入数据
    [s,w]=shang(x)[code]

    运行结果:
    s =

      Columns 1 through 9

        0.0431    0.0103   0.0371    0.0404    0.0369    0.0322   0.0507    0.0229    0.0397

      Columns 10 through 18

        0.0693    0.0878   0.0466    0.0860    0.0503    0.0800   0.0234    0.0456    0.0536

      Columns 19 through 23

        0.0272    0.0181   0.0364    0.0202    0.0420


    w =

        0.1660    0.0981   0.1757    0.3348    0.2254
  • 相关阅读:
    WEB前端工程师 – 职业生涯规划
    求Sn=a+aa+aaa+…+aaa…a的值
    输入一行字符,分别统计出其中英文字母 空格 数字和其他字符的个数
    getchar()的用法!
    求1+2+…+n的和不大于1000的最大自然数n
    编程打印输出*金字塔
    从键盘输入一个整数,判断该数是否回文数.
    编程求"水仙花数"
    编程求出1000以内的完全数
    输入两个正整数,求它们的最大公约数和最小公倍数.
  • 原文地址:https://www.cnblogs.com/zhumengdexiaobai/p/9491484.html
Copyright © 2011-2022 走看看