zoukankan      html  css  js  c++  java
  • A1107. Social Clusters

    When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A "social cluster" is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.

    Input Specification:

    Each input file contains one test case. For each test case, the first line contains a positive integer N (<=1000), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:

    Ki: hi[1] hi[2] ... hi[Ki]

    where Ki (>0) is the number of hobbies, and hi[j] is the index of the j-th hobby, which is an integer in [1, 1000].

    Output Specification:

    For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    8
    3: 2 7 10
    1: 4
    2: 5 3
    1: 4
    1: 3
    1: 4
    4: 6 8 1 5
    1: 4
    

    Sample Output:

    3
    4 3 1

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 using namespace std;
     5 int cnt[1001] = {0,0}, father[1001], hobby[1001] = {0,0};
     6 int N;
     7 int findFather(int x){
     8     int a = x;
     9     while(father[x] != x){
    10         x = father[x];
    11     }
    12     while(a != x){
    13         int temp = a[father];
    14         a[father] = x;
    15         a = temp;
    16     }
    17     return x;
    18 }
    19 void union_(int a, int b){   //a集合的根节点不变
    20     int tempa = findFather(a);
    21     int tempb = findFather(b);
    22     if(tempa != tempb){
    23         father[tempb] = a;
    24     }
    25 }
    26 bool cmp(int a, int b){
    27     return a > b;
    28 }
    29 int main(){
    30     int N;
    31     scanf("%d", &N);
    32     for(int i = 1; i <= N; i++){
    33         father[i] = i;
    34     }
    35     for(int i = 1; i <= N; i++){
    36         int num, temp;
    37         scanf("%d:", &num);
    38         for(int j = 0; j < num; j++){
    39             scanf("%d", &temp);
    40             if(hobby[temp] == 0){
    41                 hobby[temp] = i;
    42             }else{
    43                 union_(hobby[temp], i);
    44             }
    45         }
    46     }
    47     for(int i = 1; i <= N; i++){
    48         int root = findFather(i);
    49         cnt[root]++;
    50     }
    51     int ans = 0;
    52     for(int i = 1; i <= N; i++){
    53         if(cnt[i] != 0)
    54             ans++;
    55     }
    56     sort(cnt, cnt + N + 1, cmp);
    57     printf("%d
    %d", ans, cnt[0]);
    58     int k = 1;
    59     while(k < N && cnt[k] != 0){
    60         printf(" %d", cnt[k]);
    61         k++;
    62     }
    63     cin >> N;
    64     return 0;
    65 }
    View Code

    总结:

    1、题意:看了书上的解释才搞明白这道题什么意思。并不是说一个set里的所有人都要有共同的hobby,而是当两个人有至少一个共同hobby时,他们就处于一个set。比如A的hobby是1、2,B的hobby是2、3,则AB在一个set中。而C的hobby是3、4,则B、C在一个set中。AB同set,BC同set,则ABC同属一个set。其实就是考并查集。

    2、并查集的要点:

    • father[a] = b,表示a的父节点是b。若father[i] = i,则i是根节点。 初始化时,每个节点都初始化为根节点。
    • 查找根节点:当x != father[x] 时,不断进行x = father[x] 的操作即可。
    • 合并:为防止出现环路,只能对不同的集合做合并所以合并a、b时,先找到a的根节点roota, b的根节点rootb,如果roota != rootb, 则 father[rootb] = roota。严格按这个流程做可以避免出错。不要仅仅把b的父亲设为roota。
    • 路径压缩:为了降低查找的复杂度。可以放在查找根节点的函数中,当找到 x 的根节点 root 时,再从 x 往根节点回溯一次,沿途所有节点的父节点均设置为 root。

    3、只有两个人有共同hobby才将他们所在的两个set做合并,但如果对每个人保存一个hobby列表,然后每两个人检查是否有共同爱好会很费时。可以设置一个hobby数组,hobby[i]仅仅记录一个人,就是首个读入的有这个爱好的人,并将这个人作为他所在set的root节点一直不变。

  • 相关阅读:
    图像的仿射变换
    计算机视觉五大技术介绍
    图像处理与Python实现(岳亚伟)笔记五——图像特征提取
    图像处理与Python实现(岳亚伟)笔记四——频域滤波
    图像处理与Python实现(岳亚伟)笔记三——空间滤波
    python 求矩阵的特征值和特征向量
    python + numpy + np.polyfit()(最小二乘多项式拟合曲线)
    Python求定积分+处理can‘t convert expression to float错误
    python reduce() 函数
    python中的sum求和函数
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/8544565.html
Copyright © 2011-2022 走看看