When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A "social cluster" is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (<=1000), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:
Ki: hi[1] hi[2] ... hi[Ki]
where Ki (>0) is the number of hobbies, and hi[j] is the index of the j-th hobby, which is an integer in [1, 1000].
Output Specification:
For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
8 3: 2 7 10 1: 4 2: 5 3 1: 4 1: 3 1: 4 4: 6 8 1 5 1: 4
Sample Output:
3 4 3 1
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 using namespace std; 5 int cnt[1001] = {0,0}, father[1001], hobby[1001] = {0,0}; 6 int N; 7 int findFather(int x){ 8 int a = x; 9 while(father[x] != x){ 10 x = father[x]; 11 } 12 while(a != x){ 13 int temp = a[father]; 14 a[father] = x; 15 a = temp; 16 } 17 return x; 18 } 19 void union_(int a, int b){ //a集合的根节点不变 20 int tempa = findFather(a); 21 int tempb = findFather(b); 22 if(tempa != tempb){ 23 father[tempb] = a; 24 } 25 } 26 bool cmp(int a, int b){ 27 return a > b; 28 } 29 int main(){ 30 int N; 31 scanf("%d", &N); 32 for(int i = 1; i <= N; i++){ 33 father[i] = i; 34 } 35 for(int i = 1; i <= N; i++){ 36 int num, temp; 37 scanf("%d:", &num); 38 for(int j = 0; j < num; j++){ 39 scanf("%d", &temp); 40 if(hobby[temp] == 0){ 41 hobby[temp] = i; 42 }else{ 43 union_(hobby[temp], i); 44 } 45 } 46 } 47 for(int i = 1; i <= N; i++){ 48 int root = findFather(i); 49 cnt[root]++; 50 } 51 int ans = 0; 52 for(int i = 1; i <= N; i++){ 53 if(cnt[i] != 0) 54 ans++; 55 } 56 sort(cnt, cnt + N + 1, cmp); 57 printf("%d %d", ans, cnt[0]); 58 int k = 1; 59 while(k < N && cnt[k] != 0){ 60 printf(" %d", cnt[k]); 61 k++; 62 } 63 cin >> N; 64 return 0; 65 }
总结:
1、题意:看了书上的解释才搞明白这道题什么意思。并不是说一个set里的所有人都要有共同的hobby,而是当两个人有至少一个共同hobby时,他们就处于一个set。比如A的hobby是1、2,B的hobby是2、3,则AB在一个set中。而C的hobby是3、4,则B、C在一个set中。AB同set,BC同set,则ABC同属一个set。其实就是考并查集。
2、并查集的要点:
- father[a] = b,表示a的父节点是b。若father[i] = i,则i是根节点。 初始化时,每个节点都初始化为根节点。
- 查找根节点:当x != father[x] 时,不断进行x = father[x] 的操作即可。
- 合并:为防止出现环路,只能对不同的集合做合并。所以合并a、b时,先找到a的根节点roota, b的根节点rootb,如果roota != rootb, 则 father[rootb] = roota。严格按这个流程做可以避免出错。不要仅仅把b的父亲设为roota。
- 路径压缩:为了降低查找的复杂度。可以放在查找根节点的函数中,当找到 x 的根节点 root 时,再从 x 往根节点回溯一次,沿途所有节点的父节点均设置为 root。
3、只有两个人有共同hobby才将他们所在的两个set做合并,但如果对每个人保存一个hobby列表,然后每两个人检查是否有共同爱好会很费时。可以设置一个hobby数组,hobby[i]仅仅记录一个人,就是首个读入的有这个爱好的人,并将这个人作为他所在set的root节点一直不变。