71.内核原理探秘_最后优化写入流程实现海量磁盘文件合并(segment merge,optimize)
课程大纲
每秒一个segment file,文件过多,而且每次search都要搜索所有的segment,很耗时
默认会在后台执行segment merge操作,在merge的时候,被标记为deleted的document也会被彻底物理删除
每次merge操作的执行流程
(1)选择一些有相似大小的segment,merge成一个大的segment
(2)将新的segment flush到磁盘上去
(3)写一个新的commit point,包括了新的segment,并且排除旧的那些segment
(4)将新的segment打开供搜索
(5)将旧的segment删除
POST /my_index/_optimize?max_num_segments=1,尽量不要手动执行,让它自动默认执行就可以了
72.Java API初步使用_员工管理案例:基于Java实现员工信息的增删改查
课程大纲
强调一下,我们的es讲课的风格
1、es这门技术有点特殊,跟比如其他的像纯java的课程,比如分布式课程,或者大数据类的课程,比如hadoop,spark,storm等。不太一样
2、es非常重要的一个api,是它的restful api,你自己思考一下,掌握这个es的restful api,可以让你执行一些核心的运维管理的操作,比如说创建索引,维护索引,执行各种refresh、flush、optimize操作,查看集群的健康状况,比如还有其他的一些操作,就不在这里枚举了。或者说探查一些数据,可能用java api并不方便。
3、es的学习,首先,你必须学好restful api,然后才是你自己的熟悉语言的api,java api。
这个《核心知识篇(上半季)》,其实主要还是打基础,包括核心的原理,还有核心的操作,还有部分高级的技术和操作,大量的实验,大量的画图,最后初步讲解怎么使用java api
《核心知识篇(下半季)》,包括深度讲解搜索这块技术,还有聚合分析这块技术,包括数据建模,包括java api的复杂使用,有一个项目实战s
员工信息
姓名
年龄
职位
国家
入职日期
薪水
我是默认大家至少有java基础的,如果你java一点都不会,请先自己补一下
1、maven依赖
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>5.2.2</version> 添加的版本对应安装的es 6.3.0
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.7</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.7</version>
</dependency>
log4j2.properties
appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
rootLogger.level = info
rootLogger.appenderRef.console.ref = console
2、构建client
Settings settings = Settings.builder()
.put("cluster.name", "myClusterName").build();
TransportClient client = new PreBuiltTransportClient(settings);
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
(6.3.0 中的InetSocketTransportAddress好像是TransportAddress)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("host1"), 9300))
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("host2"), 9300));
client.close();
3、创建document
1是id
IndexResponse response = client.prepareIndex("index", "type", "1")
.setSource(jsonBuilder()
.startObject()
.field("user", "kimchy")
.field("postDate", new Date())
.field("message", "trying out Elasticsearch")
.endObject()
)
.get();
4、查询document
GetResponse response = client.prepareGet("index", "type", "1").get();
5、修改document
client.prepareUpdate("index", "type", "1")
.setDoc(jsonBuilder()
.startObject()
.field("gender", "male")
.endObject())
.get();
6、删除document
DeleteResponse response = client.prepareDelete("index", "type", "1").get();
73.Java API初步使用_员工管理案例:基于Java对员工信息进行复杂的搜索操作
课程大纲
SearchResponse response = client.prepareSearch("index1", "index2")
.setTypes("type1", "type2")
.setQuery(QueryBuilders.termQuery("multi", "test")) // Query
.setPostFilter(QueryBuilders.rangeQuery("age").from(12).to(18)) // Filter
.setFrom(0).setSize(60)
.get();
需求:
(1)搜索职位中包含technique的员工
(2)同时要求age在30到40岁之间
(3)分页查询,查找第一页
GET /company/employee/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"position": "technique"
}
}
],
"filter": {
"range": {
"age": {
"gte": 30,
"lte": 40
}
}
}
}
},
"from": 0,
"size": 1
}
1.插入数据 准备
2.设置查询条件
告诉大家,为什么刚才一边运行创建document,一边搜索什么都没搜索到????
近实时!!!
默认是1秒以后,写入es的数据,才能被搜索到。很明显刚才,写入数据不到一秒,我门就在搜索。
74.Java API初步使用_员工管理案例:基于Java对员工信息进行聚合分析
课程大纲
SearchResponse sr = node.client().prepareSearch()
.addAggregation(
AggregationBuilders.terms("by_country").field("country")
.subAggregation(AggregationBuilders.dateHistogram("by_year")
.field("dateOfBirth")
.dateHistogramInterval(DateHistogramInterval.YEAR)
.subAggregation(AggregationBuilders.avg("avg_children").field("children"))
)
)
.execute().actionGet();
我们先给个需求:
(1)首先按照country国家来进行分组
(2)然后在每个country分组内,再按照入职年限进行分组
(3)最后计算每个分组内的平均薪资
需要重新构建mapping 将需要聚合的字段 构建出正排索引
PUT /company
{
"mappings": {
"employee": {
"properties": {
"age": {
"type": "long"
},
"country": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
},
"fielddata": true
},
"join_date": {
"type": "date"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"position": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"salary": {
"type": "long"
}
}
}
}
}
GET /company/employee/_search
{
"size": 0,
"aggs": {
"group_by_country": {
"terms": {
"field": "country"
},
"aggs": {
"group_by_join_date": {
"date_histogram": {
"field": "join_date",
"interval": "year"
},
"aggs": {
"avg_salary": {
"avg": {
"field": "salary"
}
}
}
}
}
}
}
}
Map<String, Aggregation> aggrMap = searchResponse.getAggregations().asMap();
StringTerms groupByCountry = (StringTerms) aggrMap.get("group_by_country");
Iterator<Bucket> groupByCountryBucketIterator = groupByCountry.getBuckets().iterator();
while(groupByCountryBucketIterator.hasNext()) {
Bucket groupByCountryBucket = groupByCountryBucketIterator.next();
System.out.println(groupByCountryBucket.getKey() + " " + groupByCountryBucket.getDocCount());
Histogram groupByJoinDate = (Histogram) groupByCountryBucket.getAggregations().asMap().get("group_by_join_date");
Iterator<org.elasticsearch.search.aggregations.bucket.histogram.Histogram.Bucket> groupByJoinDateBucketIterator = groupByJoinDate.getBuckets().iterator();
while(groupByJoinDateBucketIterator.hasNext()) {
org.elasticsearch.search.aggregations.bucket.histogram.Histogram.Bucket groupByJoinDateBucket = groupByJoinDateBucketIterator.next();
System.out.println(groupByJoinDateBucket.getKey() + " " + groupByJoinDateBucket.getDocCount());
Avg avgSalary = (Avg) groupByJoinDateBucket.getAggregations().asMap().get("avg_salary");
System.out.println(avgSalary.getValue());
}
}
client.close();
}