zoukankan      html  css  js  c++  java
  • 多重平行中介(Mplus)

    title:
    multiple mediation effect;
    
    data:
    file is C:\Users\mike1\Desktop\data\沐守宽老师数据\data.csv;
    
    
    variable:
    names are X Y Z M;
    usevariables are X Y Z M;
    
    
    analysis:
    type = general;
    estimator = ML;
    bootstrap = 1000;  ! 这三行语句是比较固定的。
     
    
    model:
    
    Y on X(b1)
          Z(b2) 
          M(b3);
    Z on X(a1);
    M on X(a2); !注意必须分行写,否则无法识别路径系数的别名
    
    model constraint: new(totalind total);   ! 用于生成新的用于估计的变量。
    totalind = a1*b1 + a2*b2;
    total = a1*b1 + a2*b2 + b3;
    
    output:
    standardized cinterval(bcbootstrap);
    
    
    savedata:
    file is C:\Users\mike1\Desktop\data\Mplus\mydata1;

    总结:  y on x(b1) m(b2); 这样写是无法估计路径系数的,必须分行写 y on x(b1)

                                                                                                                           m(b2);

    图形如下:

    结果如下:

    Mplus VERSION 7
    MUTHEN & MUTHEN
    04/15/2020   2:38 PM
    
    INPUT INSTRUCTIONS
    
      title:
      multiple mediation effect;
    
      data:
      file is C:\Users\mike1\Desktop\data\沐守宽老师数据\data.csv;
    
    
      variable:
      names are X Y Z M;
      usevariables are X Y Z M;
    
    
      analysis:
      type = general;
      estimator = ML;
      bootstrap = 1000;
    
    
      model:
    
      Y on X(b1)
           Z(b2)
           M(b3);
      Z on X(a1);
      M on X(a2);
    
      model constraint: new(totalind total);
      totalind = a1*b1 + a2*b2;
      total = a1*b1 + a2*b2 + b3;
    
      output:
      standardized cinterval(bcbootstrap);
    
    
      savedata:
      file is C:\Users\mike1\Desktop\data\Mplus\mydata1;
    
    
    
    
    
    
    
    
    
    
    
    INPUT READING TERMINATED NORMALLY
    
    
    
    
    multiple mediation effect;
    
    SUMMARY OF ANALYSIS
    
    Number of groups                                                 1
    Number of observations                                         100
    
    Number of dependent variables                                    3
    Number of independent variables                                  1
    Number of continuous latent variables                            0
    
    Observed dependent variables
    
      Continuous
       Y           Z           M
    
    Observed independent variables
       X
    
    
    Estimator                                                       ML
    Information matrix                                        OBSERVED
    Maximum number of iterations                                  1000
    Convergence criterion                                    0.500D-04
    Maximum number of steepest descent iterations                   20
    Number of bootstrap draws
        Requested                                                 1000
        Completed                                                 1000
    
    Input data file(s)
      C:\Users\mike1\Desktop\data\沐守宽老师数据\data.csv
    
    Input data format  FREE
    
    
    
    THE MODEL ESTIMATION TERMINATED NORMALLY
    
    
    
    MODEL FIT INFORMATION
    
    Number of Free Parameters                       11
    
    Loglikelihood
    
              H0 Value                        -545.775
              H1 Value                        -544.933
    
    Information Criteria
    
              Akaike (AIC)                    1113.550
              Bayesian (BIC)                  1142.207
              Sample-Size Adjusted BIC        1107.466
                (n* = (n + 2) / 24)
    
    Chi-Square Test of Model Fit
    
              Value                              1.684
              Degrees of Freedom                     1
              P-Value                           0.1944
    
    RMSEA (Root Mean Square Error Of Approximation)
    
              Estimate                           0.083
              90 Percent C.I.                    0.000  0.294
              Probability RMSEA <= .05           0.249
    
    CFI/TLI
    
              CFI                                0.975
              TLI                                0.849
    
    Chi-Square Test of Model Fit for the Baseline Model
    
              Value                             33.115
              Degrees of Freedom                     6
              P-Value                           0.0000
    
    SRMR (Standardized Root Mean Square Residual)
    
              Value                              0.034
    
    
    
    MODEL RESULTS
    
                                                        Two-Tailed
                        Estimate       S.E.  Est./S.E.    P-Value
    
     Y        ON
        X                  0.168      0.148      1.135      0.256
        Z                  0.215      0.143      1.498      0.134
        M                  0.211      0.107      1.975      0.048
    
     Z        ON
        X                  0.182      0.119      1.531      0.126
    
     M        ON
        X                  0.386      0.108      3.584      0.000
    
     Intercepts
        Y                  1.867      0.987      1.891      0.059
        Z                  4.310      0.606      7.114      0.000
        M                  2.873      0.564      5.094      0.000
    
     Residual Variances
        Y                  2.214      0.331      6.687      0.000
        Z                  2.061      0.318      6.479      0.000
        M                  2.420      0.334      7.248      0.000
    
     New/Additional Parameters
        TOTALIND           0.113      0.063      1.808      0.071
        TOTAL              0.325      0.110      2.940      0.003
    
    
    STANDARDIZED MODEL RESULTS
    
                          StdYX       StdY        Std
                        Estimate   Estimate   Estimate
    
     Y        ON
        X                  0.148      0.104      0.168
        Z                  0.195      0.195      0.215
        M                  0.217      0.217      0.211
    
     Z        ON
        X                  0.177      0.124      0.182
    
     M        ON
        X                  0.333      0.234      0.386
    
     Intercepts
        Y                  1.161      1.161      1.867
        Z                  2.955      2.955      4.310
        M                  1.741      1.741      2.873
    
     Residual Variances
        Y                  0.856      0.856      2.214
        Z                  0.969      0.969      2.061
        M                  0.889      0.889      2.420
    
    
    R-SQUARE
    
        Observed
        Variable        Estimate
    
        Y                  0.144
        Z                  0.031
        M                  0.111
    
    
    CONFIDENCE INTERVALS OF MODEL RESULTS
    
                      Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
    
     Y        ON
        X               -0.228      -0.144      -0.111       0.168       0.395       0.442       0.524
        Z               -0.201      -0.095      -0.043       0.215       0.441       0.476       0.543
        M               -0.045       0.025       0.049       0.211       0.394       0.439       0.513
    
     Z        ON
        X               -0.135      -0.064      -0.016       0.182       0.369       0.405       0.460
    
     M        ON
        X                0.103       0.168       0.211       0.386       0.556       0.590       0.675
    
     Intercepts
        Y               -0.554      -0.087       0.209       1.867       3.505       3.808       4.259
        Z                2.843       3.105       3.295       4.310       5.260       5.560       5.867
        M                1.374       1.726       1.952       2.873       3.779       3.990       4.366
    
     Residual Variances
        Y                1.516       1.690       1.794       2.214       2.887       2.976       3.163
        Z                1.417       1.526       1.612       2.061       2.707       2.806       2.940
        M                1.633       1.862       1.931       2.420       3.073       3.201       3.483
    
     New/Additional Parameters
        TOTALIND        -0.055       0.001       0.023       0.113       0.227       0.246       0.278
        TOTAL            0.027       0.117       0.155       0.325       0.512       0.556       0.630
    
    
    SAVEDATA INFORMATION
    
    
      Save file
        C:\Users\mike1\Desktop\data\Mplus\mydata1
    
      Order and format of variables
    
        Y              F10.3
        Z              F10.3
        M              F10.3
        X              F10.3
    
      Save file format
        4F10.3
    
      Save file record length    10000
    
    
    DIAGRAM INFORMATION
    
      Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram.
      If running Mplus from the Mplus Diagrammer, the diagram opens automatically.
    
      Diagram output
        c:usersmike1desktopdatamplusmultiple mediation.dgm
    
         Beginning Time:  14:38:55
            Ending Time:  14:38:57
           Elapsed Time:  00:00:02
    
    
    
    MUTHEN & MUTHEN
    3463 Stoner Ave.
    Los Angeles, CA  90066
    
    Tel: (310) 391-9971
    Fax: (310) 391-8971
    Web: www.StatModel.com
    Support: Support@StatModel.com
    
    Copyright (c) 1998-2012 Muthen & Muthen
  • 相关阅读:
    SharePoint Development
    win32- copyfile的使用
    SetWindowHookEx的复习
    C++ vector的使用
    关于char * 和 char [] 的一点理解
    CreateThread
    C++字符串大写字母转小写字母
    字符串逆序
    使用RegSetValueEx创建键值
    EnumColorProfiles WcsGetDefaultColorProfile WcsSetDefaultColorProfile的使用
  • 原文地址:https://www.cnblogs.com/zijidefengge/p/12711185.html
Copyright © 2011-2022 走看看