zoukankan      html  css  js  c++  java
  • HDU3507 Print Article

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng
     
    裸的斜率dp。。注意不等号方向。。样例数据挺好的。。不管你是什么符号都输出230..23333
     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 const int N = 500100;
     7 #define For(i,n) for(int i=1;i<=n;i++)
     8 #define Rep(i,l,r) for(int i=l;i<=r;i++)
     9 
    10 int n,M,sum[N],dp[N],q[N];
    11 //  dp[i] = max{dp[j] + (sj-si)^2 + M}
    12 //-> dp[k] - dp[j] + sk^2 - sj^2 
    13 //    --------------------------   > 2si 时 j比k优 
    14 //              sk - sj
    15 
    16 int Up(int i,int j){
    17     return dp[i]+sum[i]*sum[i]-(dp[j]+sum[j]*sum[j]);
    18 }
    19 
    20 int Down(int i,int j){
    21     return sum[i]-sum[j]; 
    22 }
    23 
    24 void DP(){
    25     int l=0,r=1;
    26     For(i,n){
    27         while(l+1<r && Up(q[l],q[l+1])>=2*sum[i]*Down(q[l],q[l+1])) l++;
    28         dp[i]=dp[q[l]] + (sum[i]-sum[q[l]])*(sum[i]-sum[q[l]]) + M;
    29         while(l+1<r && Up(q[r-2],q[r-1])*Down(q[r-1],i)>=Up(q[r-1],i)*Down(q[r-2],q[r-1])) --r;
    30         q[r++]=i;
    31     } 
    32     printf("%d
    ",dp[n]);
    33 }
    34 
    35 int main(){
    36     while(scanf("%d%d",&n,&M)!=EOF){
    37         q[0]=dp[0]=0;
    38         For(i,n){
    39             scanf("%d",&sum[i]);
    40             sum[i]+=sum[i-1];
    41         }
    42         DP();
    43     }
    44     return 0;
    45 }
  • 相关阅读:
    动态生成Zip
    Net 项目构建基于Jenkins + Github + Mono 的持续集成环境
    net中使用ETW事件
    JS模板引擎
    DDD事件总线
    ASP.NET5 Beta8
    Big ball of Mud
    Jil序列化JSON
    DotNetOpenAuth实践
    centos安装wget 及配置(转)
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/3951107.html
Copyright © 2011-2022 走看看