zoukankan      html  css  js  c++  java
  • HDU3507 Print Article

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     
    Recommend
    zhengfeng
     
    裸的斜率dp。。注意不等号方向。。样例数据挺好的。。不管你是什么符号都输出230..23333
     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 const int N = 500100;
     7 #define For(i,n) for(int i=1;i<=n;i++)
     8 #define Rep(i,l,r) for(int i=l;i<=r;i++)
     9 
    10 int n,M,sum[N],dp[N],q[N];
    11 //  dp[i] = max{dp[j] + (sj-si)^2 + M}
    12 //-> dp[k] - dp[j] + sk^2 - sj^2 
    13 //    --------------------------   > 2si 时 j比k优 
    14 //              sk - sj
    15 
    16 int Up(int i,int j){
    17     return dp[i]+sum[i]*sum[i]-(dp[j]+sum[j]*sum[j]);
    18 }
    19 
    20 int Down(int i,int j){
    21     return sum[i]-sum[j]; 
    22 }
    23 
    24 void DP(){
    25     int l=0,r=1;
    26     For(i,n){
    27         while(l+1<r && Up(q[l],q[l+1])>=2*sum[i]*Down(q[l],q[l+1])) l++;
    28         dp[i]=dp[q[l]] + (sum[i]-sum[q[l]])*(sum[i]-sum[q[l]]) + M;
    29         while(l+1<r && Up(q[r-2],q[r-1])*Down(q[r-1],i)>=Up(q[r-1],i)*Down(q[r-2],q[r-1])) --r;
    30         q[r++]=i;
    31     } 
    32     printf("%d
    ",dp[n]);
    33 }
    34 
    35 int main(){
    36     while(scanf("%d%d",&n,&M)!=EOF){
    37         q[0]=dp[0]=0;
    38         For(i,n){
    39             scanf("%d",&sum[i]);
    40             sum[i]+=sum[i-1];
    41         }
    42         DP();
    43     }
    44     return 0;
    45 }
  • 相关阅读:
    mybatis源码(八) Mybatis中的#{} 和${} 占位符的区别
    mybatis源码(七)mybatis动态sql的解析过程下篇
    mybatis源码(六)mybatis动态sql的解析过程上篇
    JDBC的API介绍
    mybatis源码(五)mybatis日志实现
    jmeter: 报错锦集
    python3升级后pip提示TLS/SSL错误问题
    Pytest+Jenkins+Allure
    建议
    Android Studio Button事件的三种方式
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/3951107.html
Copyright © 2011-2022 走看看