一、基于tcp的套接字:
tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端
tcp服务端
1 ss = socket() #创建服务器套接字 2 ss.bind() #把地址绑定到套接字 3 ss.listen() #监听链接 4 inf_loop: #服务器无限循环 5 cs = ss.accept() #接受客户端链接 6 comm_loop: #通讯循环 7 cs.recv()/cs.send() #对话(接收与发送) 8 cs.close() #关闭客户端套接字 9 ss.close() #关闭服务器套接字(可选)
tcp客户端
1 cs = socket() # 创建客户套接字 2 cs.connect() # 尝试连接服务器 3 comm_loop: # 通讯循环 4 cs.send()/cs.recv() # 对话(发送/接收) 5 cs.close() # 关闭客户套接字
二、粘包问题
1.让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)
注意注意注意:
res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)
的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码
且只能从管道里读一次结果
注意:命令ls -l ; lllllll ; pwd 的结果是既有正确stdout结果,又有错误stderr结果
服务端:
from socket import * import subprocess server = socket(AF_INET, SOCK_STREAM) server.bind(('127.0.0.1', 8081)) server.listen(5) conn,_=server.accept() data1=conn.recv(5) print('第一次收: ',data1) data2=conn.recv(5) print('第二次收: ',data2) data3=conn.recv(4) print('第三次收: ',data3) # 粘包问题是tcp协议流式传输数据的方式导致的 # 如何解决粘包问题:接收端能够精确地收干净每个数据包没有任何残留
客户端:
from socket import * client = socket(AF_INET, SOCK_STREAM) client.connect(('127.0.0.1', 8081)) # tcp协议会将数据量较小且发送时间间隔较短的数据合并成一个数据报发送 client.send(b'hello') client.send(b'world') client.send(b'egon')
2.什么是粘包:
须知:只有TCP有粘包现象,UDP永远不会粘包,为何,且听我娓娓道来
首先需要掌握一个socket收发消息的原理
发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。
例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束
所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。
此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。
- TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
- UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
- tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略
udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠
tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。
两种情况下会发生粘包。
发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)
接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)
问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据
3.low版本的解决方法
服务端:
# 服务端必须满足至少三点: # 1. 绑定一个固定的ip和port # 2. 一直对外提供服务,稳定运行 # 3. 能够支持并发 from socket import * import subprocess import struct server = socket(AF_INET, SOCK_STREAM) server.bind(('127.0.0.1', 8081)) server.listen(5) # 链接循环 while True: conn, client_addr = server.accept() print(client_addr) # 通信循环 while True: try: cmd = conn.recv(1024) #cmd=b'dir' if len(cmd) == 0: break # 针对linux系统 obj=subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout=obj.stdout.read() stderr=obj.stderr.read() # 1. 先制作固定长度的报头 header=struct.pack('i',len(stdout) + len(stderr)) # 2. 再发送报头 conn.send(header) # 3. 最后发送真实的数据 conn.send(stdout) conn.send(stderr) except ConnectionResetError: break conn.close() server.close()
客户端:
from socket import * import struct client = socket(AF_INET, SOCK_STREAM) client.connect(('127.0.0.1', 8081)) # 通信循环 while True: cmd=input('>>: ').strip() if len(cmd) == 0:continue client.send(cmd.encode('utf-8')) #1. 先收报头,从报头里解出数据的长度 header=client.recv(4) total_size=struct.unpack('i',header)[0] #2. 接收真正的数据 cmd_res=b'' recv_size=0 while recv_size < total_size: data=client.recv(1024) recv_size+=len(data) cmd_res+=data print(cmd_res.decode('gbk')) client.close()
为何low:
程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗
4.解决粘包的方法:
为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据
struct模块
该模块可以把一个类型,如数字,转成固定长度的bytes
>>> struct.pack('i',1111111111111)
。。。。。。。。。
struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围
服务端:
# 服务端必须满足至少三点: # 1. 绑定一个固定的ip和port # 2. 一直对外提供服务,稳定运行 # 3. 能够支持并发 from socket import * import subprocess import struct import json server = socket(AF_INET, SOCK_STREAM) server.bind(('127.0.0.1', 8081)) server.listen(5) # 链接循环 while True: conn, client_addr = server.accept() print(client_addr) # 通信循环 while True: try: cmd = conn.recv(1024) # cmd=b'dir' if len(cmd) == 0: break # 针对linux系统 obj = subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout = obj.stdout.read() stderr = obj.stderr.read() # 1. 先制作报头 header_dic = { 'filename': 'a.txt', 'md5': 'asdfasdf123123x1', 'total_size': len(stdout) + len(stderr) } header_json = json.dumps(header_dic) header_bytes = header_json.encode('utf-8') # 2. 先发送4个bytes(包含报头的长度) conn.send(struct.pack('i', len(header_bytes))) # 3 再发送报头 conn.send(header_bytes) # 4. 最后发送真实的数据 conn.send(stdout) conn.send(stderr) except ConnectionResetError: break conn.close() server.close()
客户端:
from socket import * import struct import json client = socket(AF_INET, SOCK_STREAM) client.connect(('127.0.0.1', 8081)) # 通信循环 while True: cmd=input('>>: ').strip() if len(cmd) == 0:continue client.send(cmd.encode('utf-8')) #1. 先收4bytes,解出报头的长度 header_size=struct.unpack('i',client.recv(4))[0] #2. 再接收报头,拿到header_dic header_bytes=client.recv(header_size) header_json=header_bytes.decode('utf-8') header_dic=json.loads(header_json) print(header_dic) total_size=header_dic['total_size'] #3. 接收真正的数据 cmd_res=b'' recv_size=0 while recv_size < total_size: data=client.recv(1024) recv_size+=len(data) cmd_res+=data print(cmd_res.decode('gbk')) client.close()