zoukankan      html  css  js  c++  java
  • JZOJ 4211. 【五校联考1day2】送你一颗圣诞树 (Standard IO)

    题意

    Description
    再过三个多月就是圣诞节了,小R 想送小Y 一棵圣诞树作为节日礼物。因为他想让这棵圣诞树越大越好,所以当然是买不到能够让他满意的树的,因此他打算自己把这棵树拼出来。
    现在,小R 开始画这棵树的设计图纸了。因为这棵树实在太大,所以他采用了一种比较方便的方法。首先他定义了m+ 1 棵树T0 到Tm。最开始他只画好了T0 的图纸:就只有一个点,编号为0。
    接着,对于每一棵树Ti,他在第Tai 棵树的第ci 个点和第Tbi 棵树的第di 个点之间连上了一条长度为li 的边。在Ti 中,他保持Tai 中的所有节点编号不变,然后如果Tai 中有s 个节点,他会把Tbi 中的所有节点的编号加上s。
    终于,他画好了所有的树。现在他定义一颗大小为n 的树的美观度为树中任意两个点对的距离和,其中d(i; j) 为这棵树中i 到j 的最短距离。
    为了方便小R 选择等究竟拼哪一棵树,你可以分别告诉他T1 到Tm 的美观度吗?答案可能很大,请对10^9 + 7 取模后输出。

    Input
    第一行输入一个正整数T 表示数据组数。每组数据的第一行是一个整数m,接下来m 行每行五个整数ai, bi, ci, di, li,保证0 <= ai, bi < i, 0<= li<= 10^9,ci, di 存在。

    Output
    对于每组询问输出m 行。第i 行输出Ti 的权值

    Sample Input
    1
    2
    0 0 0 0 2
    1 1 0 0 4

    Sample Output
    2
    28

    Data Constraint
    对于30% 的数据,m <= 8
    对于60% 的数据,m <= 16
    对于100% 的数据,1 <= m<= 60,T<= 100

    Solution

    这题首先你得把题读懂。。。
    读懂以后会发现树(T_i)(T_{ai})的第(ci)个点与(T_{bi})的第(di)个点连一条长度为(li)的边形成的树。树的结点个数是指数级增长的,所以暴力肯定不行。。。

    (f_i)表示(T_i)的答案,(getdis(u,x,y))表示(T_u)中第(x)个结点与第(y)个结点的距离,(getall(u,x))表示(T_u)中第(x)个结点到其他所有点的距离之和,(size_u)表示(T_u)结点个数,容易得到下面的式子:

    • (size_0=1,size_i=size_{ai}+size_{bi} (i > 0))
    • (f_i=f_{ai}+f_{bi}+getall(a_i,c_i)*size_{bi}+getall(b_i,d_i)*size_{ai}+size_{ai}*size_{bi}*l_i)
      还有(getall)(getdis),这两个函数也可以通过分类讨论递归定义,按照递归的定义搜索求出函数值,就能get到不错的成绩。

    正解其实就是加上个记忆化,把搜过的(getdis)(getall)记录下来,下一次要调用时直接使用,时间复杂度(O()())
    记忆化可以用map或者哈希,这里我图方便用map了,其实hash应该更快一点。

    由于m范围很小,所以就能过了。

    Code

    #include <map>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    
    typedef long long ll;
    const int N = 67, mo = 1e9 + 7;
    const ll P = 1e9 + 7;
    
    int T, n;
    ll a[N], b[N], c[N], d[N], l[N], f[N], size[N], sz[N];
    
    struct note1 { int a, b, c; };
    int operator<(note1 x, note1 y) { return x.a == y.a ? (x.b == y.b ? x.c < y.c : x.b < y.b) : x.a < y.a; }
    struct note2 { int a, b; };
    int operator<(note2 x, note2 y) { return x.a == y.a ? x.b < y.b : x.a < y.a; }
    map<note1, ll> h1;
    map<note2, ll> h2;
    
    ll getdis(ll x, ll u, ll v)
    {
    	if (!x || u == v) return 0;
    	ll ret = h1[(note1){x, u, v}];
    	if (ret > 0) return ret;
    	if (u < size[a[x]] && v < size[a[x]]) ret = getdis(a[x], u, v);
    	else if (u >= size[a[x]] && v >= size[a[x]]) ret = getdis(b[x], u - size[a[x]], v - size[a[x]]);
    	else if (u < size[a[x]] && v >= size[a[x]]) ret = (getdis(a[x], u, c[x]) + getdis(b[x], v - size[a[x]], d[x]) + l[x]) % P;
    	else ret = (getdis(b[x], u - size[a[x]], d[x]) + getdis(a[x], v, c[x]) + l[x]) % P;
    	h1[(note1){x, u, v}] = ret;
    	return ret;
    }
    
    ll getall(ll x, ll u)
    {
    	if (!x) return 0;
    	ll ret = h2[(note2){x, u}];
    	if (ret > 0) return ret;
    	if (u < size[a[x]]) ret = (getall(a[x], u) + (getdis(a[x], u, c[x]) + l[x]) * sz[b[x]] % P + getall(b[x], d[x])) % P;
    	else ret = (getall(b[x], u - size[a[x]]) + (getdis(b[x], u - size[a[x]], d[x]) + l[x]) * sz[a[x]] % P + getall(a[x], c[x])) % P;
    	h2[(note2){x, u}] = ret;
    	return ret;
    }
    
    int main()
    {
    	scanf("%d", &T);
    	while (T--)
    	{
    		h1.clear(), h2.clear();
    		scanf("%d", &n);
    		for (int i = 1; i <= n; i++) scanf("%lld%lld%lld%lld%lld", a + i, b + i, c + i, d + i, l + i);
    		size[0] = sz[0] = 1;
    		for (int i = 1; i <= n; i++) size[i] = size[a[i]] + size[b[i]], sz[i] = size[i] % P;
    		for (int i = 1; i <= n; i++) f[i] = (f[a[i]] + f[b[i]] + getall(a[i], c[i]) * sz[b[i]] % P + getall(b[i], d[i]) * sz[a[i]] % P + sz[a[i]] * sz[b[i]] % P * l[i] % P) % P, printf("%lld
    ", f[i]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    net下开发COM+组件(一)
    C#中自定义属性的例子
    textBox的readonly=true
    关于ADO.Net的数据库连接池
    CYQ.Data 轻量数据层之路 使用篇三曲 MAction 取值赋值(十四)
    CYQ.Data 轻量数据层之路 SQLHelper 回头太难(八)
    CYQ.Data 轻量数据层之路 MDataTable 绑定性能优化之章(十一)
    C# 浅拷贝与深拷贝区别 解惑篇
    C#中的 ref 传进出的到底是什么 解惑篇
    CYQ.Data 轻量数据层之路 使用篇五曲 MProc 存储过程与SQL(十六)
  • 原文地址:https://www.cnblogs.com/zjlcnblogs/p/10325089.html
Copyright © 2011-2022 走看看