zoukankan      html  css  js  c++  java
  • [ACM_几何] Fishnet

    本题大意:有一个1X1的矩形,每边按照从小到大的顺序给n个点如图,然后对应连线将举行划分,求最大面积。

    解题思路:暴力算出各点,求出各面积

    #include<iostream>
    #include<cmath>
    #include<string.h>
    #include<string>
    #include<stdio.h>
    #include<algorithm>
    #include<iomanip>
    
    using namespace std;
    #define eps 0.0000000001
    #define PI acos(-1.0)
    
    
    //点和向量
    struct Point{
        double x,y;
        Point(double x=0,double y=0):x(x),y(y){}
    };
    typedef Point Vector;
    Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
    Vector operator-(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
    Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}
    Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}
    bool operator<(const Vector& a,const Vector& b){return a.x<b.x||(a.x==b.x && a.y<b.y);}
    int dcmp(double x){
        if(fabs(x)<eps)return 0;
        else return x<0 ? -1:1;
    }
    bool operator==(const Point& a,const Point& b){
        return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
    }
    double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//向量点积
    double Length(Vector A){return sqrt(Dot(A,A));}//向量模长
    double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}//向量夹角
    double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}
    double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);}//三角形面积的2倍
    //绕起点逆时针旋转rad度
    Vector Rotate(Vector A,double rad){          
        return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
    }
    double torad(double jiao){return jiao/180*PI;}//角度转弧度
    double tojiao(double ang){return ang/PI*180;}//弧度转角度 
    //单位法向量
    Vector Normal(Vector A){
        double L=Length(A);
        return Vector(-A.y/L,A.x/L);
    }
    //点和直线
    struct Line{
        Point P;//直线上任意一点
        Vector v;//方向向量,他的左边对应的就是半平面
        double ang;//极角,即从x正半轴旋转到向量v所需的角(弧度)
        Line(){}
        Line(Point p,Vector v):P(p),v(v){ang=atan2(v.y,v.x);}
        bool operator<(const Line& L)const {
            return ang<L.ang;
        }
    };
    //计算直线P+tv和Q+tw的交点(计算前必须确保有唯一交点)即:Cross(v,w)非0
    Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }
    //点到直线距离(dis between point P and line AB)
    double DistanceToLine(Point P,Point A,Point B){
        Vector v1=B-A , v2=P-A;
        return fabs(Cross(v1,v2))/Length(v1);
    }
    //dis between point P and segment AB
    double DistancetoSegment(Point P,Point A,Point B){
        if(A==B)return Length(P-A);
        Vector v1=B-A,v2=P-A,v3=P-B;
        if(dcmp(Dot(v1,v2))<0)return  Length(v2);
        else if(dcmp(Dot(v1,v3))>0)return Length(v3);
        else return fabs(Cross(v1,v2))/Length(v1);
    }
    //point P on line AB 投影点
    Point GetLineProjection(Point P,Point A,Point B){
        Vector v=B-A;
        return A+v*(Dot(v,P-A)/Dot(v,v));
    }
    //线段规范相交(只有一个且不在端点)每条线段两端都在另一条两侧,(叉积符号不同)
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
        double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
               c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    //判断点P是否在线段AB上
    bool OnSegment(Point p,Point a1,Point a2){
        return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
    }
    //多边形的面积(可以是非凸多边形)
    double PolygonArea(Point* p,int n){
        double area=0;
        for(int i=1;i<n-1;i++)
            area+=Cross(p[i]-p[0],p[i+1]-p[0]);
        return area/2;
    }
    
    
    //点p在有向直线左边,上面不算
    bool OnLeft(Line L,Point p){
        return Cross(L.v,p-L.P)>0;
    }
    
    double ok(double x,double y,double d,double z){
        double f=fabs(d*(1/tan(acos(z/y))+1/tan(acos(z/x))))-z;
        if(fabs(f)<1e-4)return  0;
        else return f;
    }
    //计算凸包输入点数组p,个数n,输出点数组ch,返回凸包定点数
    //输入不能有重复,完成后输入点顺序被破坏
    //如果不希望凸包的边上有输入点,把两个<=改成<
    //精度要求高时,建议用dcmp比较
    //基于水平的Andrew算法-->1、点排序2、删除重复的然后把前两个放进凸包
    //3、从第三个往后当新点在凸包前进左边时继续,否则一次删除最近加入的点,直到新点在左边
    int ConVexHull(Point* p,int n,Point*ch){
        sort(p,p+n);
        int m=0;
        for(int i=0;i<n;i++){//下凸包
            while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
            ch[m++]=p[i];
        }
        int k=m;
        for(int i=n-2;i>=0;i--){//上凸包
            while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
            ch[m++]=p[i];
        }
        if(n>1)m--;
        return m;
    }
    int main(){
        Point point[33][33];
        Point a[33],b[33],c[33],d[33];
        for(int n;cin>>n&&n;){
    
            point[0][0].x=0;
            point[0][0].y=0;
            for(int i=0;i<n;i++){
                cin>>a[i].x;
                a[i].y=0;
                point[0][i+1]=a[i];
            }
    
            point[n+1][n+1].x=1;
            point[n+1][n+1].y=1;
            for(int i=0;i<n;i++){
                cin>>b[i].x;
                b[i].y=1;
                point[n+1][i+1]=b[i];
            }
    
            point[n+1][0].x=0;
            point[n+1][0].y=1;
            for(int i=0;i<n;i++){
                cin>>c[i].y;
                c[i].x=0;
                point[i+1][0]=c[i];
            }
    
            point[0][n+1].x=1;
            point[0][n+1].y=0;
            for(int i=0;i<n;i++){
                cin>>d[i].y;
                d[i].x=1;
                point[i+1][n+1]=d[i];
            }
    
            for(int i=0;i<n;i++){
                for(int j=0;j<n;j++){
                    point[i+1][j+1]=GetLineIntersection(c[i],d[i]-c[i],a[j],b[j]-a[j]);
                }
            }
    
            Point four[4];
            double max=-1,area;
            for(int i=0;i<=n;i++){
                for(int j=0;j<=n+1;j++){
                    four[0]=point[i][j];
                    four[1]=point[i][j+1];
                    four[2]=point[i+1][j+1];
                    four[3]=point[i+1][j];
                    area=PolygonArea(four,4);
                    if(area>max)max=area;
                }
            }
            cout<<fixed<<max<<'
    ';
        }return 0;
    }
    View Code
  • 相关阅读:
    数据库 PSU,SPU(CPU),Bundle Patches 和 Patchsets 补丁号码快速参考 (文档 ID 1922396.1)
    从巡检备份失败排查解决数据库故障
    oracle rac自动生成awr
    解决 umount 时出现的 "Device is busy"
    修改sys密码与nbu备份脚本密码后,nbu备份报密码无效
    Oracle_RAC数据库GI的PSU升级(11.2.0.4.0到11.2.0.4.8)
    oracle补丁升级
    AIX上增加逻辑卷时报错误0516-787 extendlv: Maximum allocation for logical volume
    oracle11g dataguard 完全手册
    数据库节点1存储丢失
  • 原文地址:https://www.cnblogs.com/zjutlitao/p/3243883.html
Copyright © 2011-2022 走看看