zoukankan      html  css  js  c++  java
  • 二叉查找树:Python实现

    二叉查找树,英文Binary Search Tree,也叫二叉排序树,是一种基本的数据结构,简称BST

    它支持多种动态集合操作,包括查找(find),最小值(minimum),最大值(maximum),后继(successor),前驱(predecessor),插入(insert),删除(delete),以及中序遍历等。它既可以用作字典,也可以用作优先队列。

    BST不是稳定的树,极端情况下会退化为线性结构,但平均期望上,insert,delete操作可以为O(lg n),树的期望高度为O(lg n)。

    参考了《算法导论》等书,写出了具有insert,delete,find功能的BST,如果有认为不正确的地方欢迎拍砖。

    #coding:utf8
    #author:HaxtraZ
    
    
    class BST(object):
        """二叉查找树的简单实现"""
        def __init__(self):
            self.root = None
    
        def insert(self, val):
            newNode = BSTnode(val)
            if self.root is None:
                self.root = newNode
            else:
                curNode = self.root
                while True:
                    if val < curNode.val:
                        #进入左子树
                        if curNode.left is None:
                            curNode.left = newNode
                            newNode.parent = curNode
                            break
                        curNode = curNode.left
                    else:
                        #进入右子树
                        if curNode.right is None:
                            curNode.right = newNode
                            newNode.parent = curNode
                            break
                        curNode = curNode.right
    
        def find(self, val):
            curNode = self.root
            while curNode is not None:
                if val < curNode.val:
                    curNode = curNode.left
                elif val > curNode.val:
                    curNode = curNode.right
                else:
                    return True  # 找到了!
    
            return False  # 没找到
    
        def delete(self, val):
            curNode = self.root
            while curNode is not None:
                if val < curNode.val:
                    curNode = curNode.left
                elif val > curNode.val:
                    curNode = curNode.right
                else:
                    # 找到了val
                    if curNode.left is not None and curNode.right is not None:
                        target = self.successor(curNode.right).val
                        curNode.val = target.val
                        self.delete(target)
                    elif curNode.left is not None:
                        if curNode == self.root:
                            self.root = curNode.left
                        parNode = curNode.parent
                        subNode = curNode.left
                        if parNode.left == curNode:
                            parNode.left = subNode
                        else:
                            parNode.right = subNode
                        subNode.parent = parNode
                    else:
                        if curNode == self.root:
                            self.root = curNode.right
                        parNode = curNode.parent
                        subNode = curNode.right
                        if parNode.right == curNode:
                            parNode.right = subNode
                        else:
                            parNode.left = subNode
    
                    return True
            return False  # 不存在val,删除失败
    
        def minimum(self, node):
            # 返回最小值的节点。其实就是most left one
            curNode = node
            if curNode is None:
                #空树
                return None
            while curNode.left is not None:
                curNode = curNode.left
            return curNode
    
        def maximum(self, node):
            #返回最大值的节点。其实就是most right one
            curNode = node
            if curNode is None:
                #空树
                return None
            while curNode.right is not None:
                curNode = curNode.right
            return curNode
    
        def successor(self, node):
            #node是二叉查找树中的一个节点
            #寻找node的后继节点,然后返回
            curNode = node
            if curNode.right is not None:
                #右子树非空,返回右子树最左节点
                return self.minimun(curNode.right)
            else:
                #右子树为空,则返回“最低祖先”
                parNode = curNode.parent
                while parNode is not None and parNode.right == curNode:
                    curNode = parNode
                    parNode = parNode.parent
                return parNode
    
        def show(self):
            # 中序遍历
            self.display(self.root)
            print '
    '
    
        def display(self, node):
            if node is None:
                return
            self.display(node.left)
            print node.val,
            self.display(node.right)
    
    #    def predecessor(self, node):
            # 获取前驱节点。类似于获取后继节点,这里省略。。
    
    
    class BSTnode(object):
        """二叉查找树的节点类型"""
        def __init__(self, val):
            self.val = val
            self.left = None
            self.right = None
            self.parent = None
    
    
    if __name__ == '__main__':
        mylist = [2, 2, 7, 4, 1, 5]
        bst = BST()
        for i in range(len(mylist)):
            bst.insert(mylist[i])
    
        bst.show()
        bst.delete(7)
        bst.show()
    

      

  • 相关阅读:
    《梦断代码》阅读笔记01
    linux c netcdf 安装
    Windows CE中的进程和线程
    VC做任务管理器涉及到的函数
    curl_easy_getinfo() -- 从 curl 句柄里获得附加信息
    libcurl programming
    动态内存申请函数选择(realloc、malloc 、alloca、 calloc)
    C++: byte和int的相互转化
    8位灰度图像BMP的保存
    BMP图像的结构及读写和灰度化
  • 原文地址:https://www.cnblogs.com/zjutzz/p/3277421.html
Copyright © 2011-2022 走看看