交流电机优选
电机启动、变速、制动的方法不唯一,本文主要采用变频调速的方式。通过调试参数发现,电机的稳定速度与频率成正比,所以根据稳定速度选择对应的定子频率。例如,fs = 27Hz对应n=799r/min, fs=19.8Hz对应600r/min左右。求得比例系数k=fs/n=0.0330-0.0338。
通过调整频率大小实现速度的变化,调速时为了实现转速平滑变化、防止输出转矩过大,可以设置过渡频率(介于调速前后稳定频率之间)。
采取策略
- 控制电机带重物上升,从静止加速到800r/min—— fs=27Hz启动直至达到稳定速度的98%;
- 保持800r/min匀速运动0.5s—— fs=27Hz保持匀速运行;
- 减速到静止,保持静止状态0.5s—— 先将fs减少至15Hz,持续50ms后将频率降至0.2Hz(此时稳定频率小于5r/min,可视为静止);
- 带重物下降,从静止达到600r/min—— 首先需要改变电机旋转方向,我们可以通过多路开关改变各相电路相位关系:初始条件下,B相电压落后A相-2/3pi;C相电压落后A相-4/pi。现在调整为B相电压超前A相2 pi /3;C相电压超前A相4 pi /3。之后,在200ms的时间内将定子频率fs从0.2Hz线性增长至19.8Hz。再在300ms左右的时间内,将定子频率fs稳定在19.8Hz,使电机反向加速至600r/min。
- 保持600r/min匀速运动0.6s—— fs=19.8Hz电机稳定运行。
- 减速到静止—— fs=0Hz,电机转速快速衰减至0。
仿真结果:电机完成整个过程大致需要3200ms,过程中加速过程较为平滑,减速过程较为陡峭,输出转矩(电流)偏大。全过程转速变化最大超调量小于5%。
转速曲线
代码如下:
model SACIM "A Simple AC Induction Motor Model" type Voltage=Real(unit="V"); type Current=Real(unit="A"); type Resistance=Real(unit="Ohm"); type Inductance=Real(unit="H"); type Speed=Real(unit="r/min"); type Torque=Real(unit="N.m"); type Inertia=Real(unit="kg.m^2"); type Frequency=Real(unit="Hz"); type Flux=Real(unit="Wb"); type Angle=Real(unit="rad"); type AngularVelocity=Real(unit="rad/s"); constant Real Pi = 3.1415926; Current i_A"A Phase Current of Stator"; Current i_B"B Phase Current of Stator"; Current i_C"C Phase Current of Stator"; Voltage u_A"A Phase Voltage of Stator"; Voltage u_B"B Phase Voltage of Stator"; Voltage u_C"C Phase Voltage of Stator"; Current i_a"A Phase Current of Rotor"; Current i_b"B Phase Current of Rotor"; Current i_c"C Phase Current of Rotor"; Frequency f_s"Frequency of Stator"; Torque Tm"Torque of the Motor"; Speed n"Speed of the Motor"; Flux Psi_A"A Phase Flux-Linkage of Stator"; Flux Psi_B"B Phase Flux-Linkage of Stator"; Flux Psi_C"C Phase Flux-Linkage of Stator"; Flux Psi_a"a Phase Flux-Linkage of Rotor"; Flux Psi_b"b Phase Flux-Linkage of Rotor"; Flux Psi_c"c Phase Flux-Linkage of Rotor"; Angle phi"Electrical Angle of Rotor"; Angle phi_m"Mechnical Angle of Rotor"; AngularVelocity w"Angular Velocity of Rotor"; Torque Tl"Load Torque"; parameter Resistance Rs = 0.531+0.5 "Stator Resistance"; parameter Resistance Rr = 0.408+0.5 "Rotor Resistance"; parameter Inductance Ls = 0.00252"Stator Leakage Inductance"; parameter Inductance Lr = 0.00252"Rotor Leakage Inductance"; parameter Inductance Lm = 0.00847"Mutual Inductance"; parameter Frequency f_N = 50"Rated Frequency of Stator"; parameter Voltage u_N = 220"Rated Phase Voltage of Stator"; parameter Real p =2"number of pole pairs"; parameter Inertia Jm = 0.1"Motor Inertia"; parameter Inertia Jl = 1"Load Inertia"; parameter Frequency f1 = 27; parameter Frequency f2 = 15; parameter Frequency f3 = 0.2; parameter Frequency f4 = 19.8; parameter Frequency f5 = 19.8; parameter Real t1 = 100+500+671; //加速 800r/min恒速 parameter Real t2 = t1+50; //减速 parameter Real t3 = t2+600; //静止0.5s parameter Real t4 = t3+200; //反向加速 parameter Real t5 = t4+300+600; //600r/min恒速 // parameter Real t6 = t5+200; // Real time1(start=0); Real time2(start=0); Real time3(start=0); initial equation Psi_A = 0; Psi_B = 0; Psi_C = 0; Psi_a = 0; Psi_b = 0; Psi_c = 0; phi = 0; w = 0; equation u_A = Rs * i_A + 1000 * der(Psi_A); u_B = Rs * i_B + 1000 * der(Psi_B); u_C = Rs * i_C + 1000 * der(Psi_C); 0 = Rr * i_a + 1000 * der(Psi_a); 0 = Rr * i_b + 1000 * der(Psi_b); 0 = Rr * i_c + 1000 * der(Psi_c); Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c; Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c; Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c; Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c; Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c; Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c; Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3)); w = 1000 * der(phi_m); phi_m = phi/p; n= w*60/(2*Pi); Tm-Tl = (Jm+Jl) * 1000 * der(w); if time <= 100 then u_A = 0; u_B = 0; u_C = 0; Tl = 0; elseif time <= t4 then u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000); u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3); u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3); Tl = 15; else u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000); u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000+2*Pi/3); u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000+4*Pi/3); Tl = 15; end if; algorithm if time <= 100 then f_s := 0; elseif time <= t1 then f_s := f1; elseif time <= t2 then f_s := f2; //f_s := (time-t1)/(t2-t1)*(f2-f1)+f1; //f_s = exp(-(time-t1)/(t2-t1)*4)*(f1-f2)+f2; //f_s = (1-exp(-(time-t1)/(t2-t1)*5))*(f2-f1)+f1; elseif time <= t3 then f_s := f3; elseif time <= t4 then //f_s := f4; f_s := (time-t3)/(t4-t3)*(f4-f3)+f3; //f_s = exp(-(time-t3)/(t4-t3)*4)*(f3-f4)+f4; //f_s = (1-exp(-(time-t3)/(t4-t3)*5))*(f4-f3)+f3; elseif time <= t5 then f_s := f5; else f_s := 0; end if; //u_N := 220*f_s/f1; if n > 800*0.98 and n < 800*0.99 then time1 := time; //time2 := time1 + 500; end if; if n < 0.1 then time2 := time; end if; if n > -600*0.98 and n < -600*0.99 then time3 := time; end if; end SACIM;