zoukankan      html  css  js  c++  java
  • map reduce相关程序

    Test_1.java

    /**  
     * Hadoop网络课程模板程序
     * 编写者:James
     */  
    
    import java.io.IOException;
    import java.text.DateFormat;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    /**  
     * 无Reducer版本
     */  
    public class Test_1 extends Configured implements Tool {    
        
        /**  
         * 计数器
         * 用于计数各种异常数据
         */  
        enum Counter 
        {
            LINESKIP,    //出错的行
        }
        
        /**  
         * MAP任务
         */  
        public static class Map extends Mapper<LongWritable, Text, NullWritable, Text> 
        {
            public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException 
            {
                String line = value.toString();                //读取源数据
                
                try
                {
                    //数据处理
                    String [] lineSplit = line.split(" ");
                    String month = lineSplit[0];
                    String time = lineSplit[1];
                    String mac = lineSplit[6];
                    Text out = new Text(month + ' ' + time + ' ' + mac);
                    
                    context.write( NullWritable.get(), out);    //输出
                }
                catch ( java.lang.ArrayIndexOutOfBoundsException e )
                {
                    context.getCounter(Counter.LINESKIP).increment(1);    //出错令计数器+1
                    return;
                }
            }
        }
    
    
        @Override
        public int run(String[] args) throws Exception 
        {
            Configuration conf = getConf();
    
            Job job = new Job(conf, "Test_1");                                //任务名
            job.setJarByClass(Test_1.class);                                //指定Class
            
            FileInputFormat.addInputPath( job, new Path(args[0]) );            //输入路径
            FileOutputFormat.setOutputPath( job, new Path(args[1]) );        //输出路径
            
            job.setMapperClass( Map.class );                                //调用上面Map类作为Map任务代码
            job.setOutputFormatClass( TextOutputFormat.class );
            job.setOutputKeyClass( NullWritable.class );                    //指定输出的KEY的格式
            job.setOutputValueClass( Text.class );                            //指定输出的VALUE的格式
            
            job.waitForCompletion(true);
            
            //输出任务完成情况
            System.out.println( "任务名称:" + job.getJobName() );
            System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) );
            System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
            System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
            System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() );
    
            return job.isSuccessful() ? 0 : 1;
        }
        
        /**  
         * 设置系统说明
         * 设置MapReduce任务
         */  
        public static void main(String[] args) throws Exception 
        {
            
            //判断参数个数是否正确
            //如果无参数运行则显示以作程序说明
            if ( args.length != 2 )
            {
                System.err.println("");
                System.err.println("Usage: Test_1 < input path > < output path > ");
                System.err.println("Example: hadoop jar ~/Test_1.jar hdfs://localhost:9000/home/james/Test_1 hdfs://localhost:9000/home/james/output");
                System.err.println("Counter:");
                System.err.println("	"+"LINESKIP"+"	"+"Lines which are too short");
                System.exit(-1);
            }
            
            //记录开始时间
            DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" );
            Date start = new Date();
            
            //运行任务
            int res = ToolRunner.run(new Configuration(), new Test_1(), args);
    
            //输出任务耗时
            Date end = new Date();
            float time =  (float) (( end.getTime() - start.getTime() ) / 60000.0) ;
            System.out.println( "任务开始:" + formatter.format(start) );
            System.out.println( "任务结束:" + formatter.format(end) );
            System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); 
    
            System.exit(res);
        }
    }

    Test_1数据

    Apr 23 11:49:54 hostapd: wlan0: STA 14:7d:c5:9e:fb:84 
    Apr 23 11:49:52 hostapd: wlan0: STA 74:e5:0b:04:28:f2
    Apr 23 11:49:50 hostapd: wlan0: STA cc:af:78:cc:d5:5d 
    Apr 23 11:49:44 hostapd: wlan0: STA cc:af:78:cc:d5:5d 
    Apr 23 11:49:43 hostapd: wlan0: STA 74:e5:0b:04:28:f2
    Apr 23 11:49:42 hostapd: wlan0: STA 14:7d:c5:9e:fb:84 

    Test_2.java

    /**  
     * Hadoop网络课程模板程序
     * 编写者:James
     */  
    
    import java.io.IOException;
    import java.text.DateFormat;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
     
    /**  
     * 有Reducer版本
     */  
    public class Test_2 extends Configured implements Tool {    
        
        /**  
         * 计数器
         * 用于计数各种异常数据
         */  
        enum Counter 
        {
            LINESKIP,    //出错的行
        }
        
        /**  
         * MAP任务
         */  
        public static class Map extends Mapper<LongWritable, Text, Text, Text> 
        {
            public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException 
            {
                String line = value.toString();                //读取源数据
                
                try
                {
                    //数据处理
                    String [] lineSplit = line.split(" ");
                    String anum = lineSplit[0];
                    String bnum = lineSplit[1];
                    
                    context.write( new Text(bnum), new Text(anum) );    //输出
                }
                catch ( java.lang.ArrayIndexOutOfBoundsException e )
                {
                    context.getCounter(Counter.LINESKIP).increment(1);    //出错令计数器+1
                    return;
                }
            }
        }
    
        /**  
         * REDUCE任务
         */ 
        public static class Reduce extends Reducer<Text, Text, Text, Text> 
        {
            public void reduce ( Text key, Iterable<Text> values, Context context ) throws IOException, InterruptedException
            {
                String valueString;
                String out = "";
                
                for ( Text value : values )
                {
                    valueString = value.toString();
                    out += valueString + "|";
                }
                
                context.write( key, new Text(out) );
            }
        }
    
        @Override
        public int run(String[] args) throws Exception 
        {
            Configuration conf = getConf();
    
            Job job = new Job(conf, "Test_2");                                //任务名
            job.setJarByClass(Test_2.class);                                //指定Class
            
            FileInputFormat.addInputPath( job, new Path(args[0]) );            //输入路径
            FileOutputFormat.setOutputPath( job, new Path(args[1]) );        //输出路径
            
            job.setMapperClass( Map.class );                                //调用上面Map类作为Map任务代码
            job.setReducerClass ( Reduce.class );                            //调用上面Reduce类作为Reduce任务代码
            job.setOutputFormatClass( TextOutputFormat.class );
            job.setOutputKeyClass( Text.class );                            //指定输出的KEY的格式
            job.setOutputValueClass( Text.class );                            //指定输出的VALUE的格式
            
            job.waitForCompletion(true);
            
            //输出任务完成情况
            System.out.println( "任务名称:" + job.getJobName() );
            System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) );
            System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
            System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
            System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() );
    
            return job.isSuccessful() ? 0 : 1;
        }
        
        /**  
         * 设置系统说明
         * 设置MapReduce任务
         */  
        public static void main(String[] args) throws Exception 
        {
            
            //判断参数个数是否正确
            //如果无参数运行则显示以作程序说明
            if ( args.length != 2 )
            {
                System.err.println("");
                System.err.println("Usage: Test_2 < input path > < output path > ");
                System.err.println("Example: hadoop jar ~/Test_2.jar hdfs://localhost:9000/home/james/Test_2 hdfs://localhost:9000/home/james/output");
                System.err.println("Counter:");
                System.err.println("	"+"LINESKIP"+"	"+"Lines which are too short");
                System.exit(-1);
            }
            
            //记录开始时间
            DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" );
            Date start = new Date();
            
            //运行任务
            int res = ToolRunner.run(new Configuration(), new Test_2(), args);
    
            //输出任务耗时
            Date end = new Date();
            float time =  (float) (( end.getTime() - start.getTime() ) / 60000.0) ;
            System.out.println( "任务开始:" + formatter.format(start) );
            System.out.println( "任务结束:" + formatter.format(end) );
            System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); 
    
            System.exit(res);
        }
    }

    Test_2数据

    13599999999 10086
    13899999999    120
    13944444444 13800138000
    13722222222 13800138000
    18800000000 120
    13722222222 10086
    18944444444 10086

    Exercise_1.java

    /**  
     * Hadoop网络课程作业程序
     * 编写者:James
     */  
    
    import java.io.IOException;
    import java.text.DateFormat;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    public class Exercise_1 extends Configured implements Tool {    
        
        /**  
         * 计数器
         * 用于计数各种异常数据
         */  
        enum Counter 
        {
            LINESKIP,    //出错的行
        }
        
        /**  
         * MAP任务
         */  
        public static class Map extends Mapper<LongWritable, Text, NullWritable, Text> 
        {
            public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException 
            {
                String line = value.toString();                //读取源数据
                
                try
                {
                    //数据处理
                    String [] lineSplit = line.split(" ");
                    String month = lineSplit[0];
                    String time = lineSplit[1];
                    String mac = lineSplit[6];
    
                    /**  需要注意的部分       **/ 
                    
                    String name = context.getConfiguration().get("name");
                    Text out = new Text(name + ' ' + month + ' ' + time + ' ' + mac);
                    
                    /**  需要注意的部分       **/ 
                    
                    
                    context.write( NullWritable.get(), out);    //输出
                }
                catch ( java.lang.ArrayIndexOutOfBoundsException e )
                {
                    context.getCounter(Counter.LINESKIP).increment(1);    //出错令计数器+1
                    return;
                }
            }
        }
    
    
        @Override
        public int run(String[] args) throws Exception 
        {
            Configuration conf = getConf();
            
            /**  需要注意的部分       **/ 
     
            conf.set("name", args[2]);
    
            /**  需要注意的部分       **/ 
    
            Job job = new Job(conf, "Exercise_1");                            //任务名
            job.setJarByClass(Exercise_1.class);                            //指定Class
            
            FileInputFormat.addInputPath( job, new Path(args[0]) );            //输入路径
            FileOutputFormat.setOutputPath( job, new Path(args[1]) );        //输出路径
            
            job.setMapperClass( Map.class );                                //调用上面Map类作为Map任务代码
            job.setOutputFormatClass( TextOutputFormat.class );
            job.setOutputKeyClass( NullWritable.class );                    //指定输出的KEY的格式
            job.setOutputValueClass( Text.class );                            //指定输出的VALUE的格式
            
            job.waitForCompletion(true);
            
            //输出任务完成情况
            System.out.println( "任务名称:" + job.getJobName() );
            System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) );
            System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
            System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
            System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() );
    
            return job.isSuccessful() ? 0 : 1;
        }
        
        /**  
         * 设置系统说明
         * 设置MapReduce任务
         */  
        public static void main(String[] args) throws Exception 
        {
            
            //判断参数个数是否正确
            //如果无参数运行则显示以作程序说明
            if ( args.length != 3 )
            {
                System.err.println("");
                System.err.println("Usage: Test_1 < input path > < output path > < name >");
                System.err.println("Example: hadoop jar ~/Test_1.jar hdfs://localhost:9000/home/james/Test_1 
    hdfs://localhost:9000/home/james/output hadoop"); System.err.println("Counter:"); System.err.println(" "+"LINESKIP"+" "+"Lines which are too short"); System.exit(-1); } //记录开始时间 DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ); Date start = new Date(); //运行任务 int res = ToolRunner.run(new Configuration(), new Exercise_1(), args); //输出任务耗时 Date end = new Date(); float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ; System.out.println( "任务开始:" + formatter.format(start) ); System.out.println( "任务结束:" + formatter.format(end) ); System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res); } }

    result_1

    hadoop Apr 23 14:7d:c5:9e:fb:84
    hadoop Apr 23 74:e5:0b:04:28:f2
    hadoop Apr 23 cc:af:78:cc:d5:5d
    hadoop Apr 23 cc:af:78:cc:d5:5d
    hadoop Apr 23 74:e5:0b:04:28:f2
    hadoop Apr 23 14:7d:c5:9e:fb:84

    Exercise_2.java

    /**  
     * Hadoop网络课程作业程序
     * 编写者:James
     */  
    
    import java.io.IOException;
    import java.text.DateFormat;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    public class Exercise_2 extends Configured implements Tool {    
        
        /**  
         * 计数器
         * 用于计数各种异常数据
         */  
        enum Counter 
        {
            LINESKIP,    //出错的行
        }
        
        /**  
         * MAP任务
         */  
        public static class Map extends Mapper<LongWritable, Text, NullWritable, Text> 
        {
            
            /**  需要注意的部分       **/
            
            private String name;
            public void setup ( Context context )
            {
                this.name = context.getConfiguration().get("name");                    //读取名字
            }
            
            /**  需要注意的部分       **/
            
            
            public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException 
            {
                String line = value.toString();                //读取源数据
                
                try
                {
                    //数据处理
                    String [] lineSplit = line.split(" ");
                    String month = lineSplit[0];
                    String time = lineSplit[1];
                    String mac = lineSplit[6];
    
                    /**  需要注意的部分       **/ 
                    
                    Text out = new Text(this.name + ' ' + month + ' ' + time + ' ' + mac);
                    
                    /**  需要注意的部分       **/ 
                    
                    
                    context.write( NullWritable.get(), out);    //输出
                }
                catch ( java.lang.ArrayIndexOutOfBoundsException e )
                {
                    context.getCounter(Counter.LINESKIP).increment(1);    //出错令计数器+1
                    return;
                }
            }
        }
    
    
        @Override
        public int run(String[] args) throws Exception 
        {
            Configuration conf = getConf();
            
            /**  需要注意的部分       **/ 
     
            conf.set("name", args[2]);
    
            /**  需要注意的部分       **/ 
    
            Job job = new Job(conf, "Exercise_2");                            //任务名
            job.setJarByClass(Exercise_2.class);                            //指定Class
            
            FileInputFormat.addInputPath( job, new Path(args[0]) );            //输入路径
            FileOutputFormat.setOutputPath( job, new Path(args[1]) );        //输出路径
            
            job.setMapperClass( Map.class );                                //调用上面Map类作为Map任务代码
            job.setOutputFormatClass( TextOutputFormat.class );
            job.setOutputKeyClass( NullWritable.class );                    //指定输出的KEY的格式
            job.setOutputValueClass( Text.class );                            //指定输出的VALUE的格式
            
            job.waitForCompletion(true);
            
            //输出任务完成情况
            System.out.println( "任务名称:" + job.getJobName() );
            System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) );
            System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
            System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
            System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() );
    
            return job.isSuccessful() ? 0 : 1;
        }
        
        /**  
         * 设置系统说明
         * 设置MapReduce任务
         */  
        public static void main(String[] args) throws Exception 
        {
            
            //判断参数个数是否正确
            //如果无参数运行则显示以作程序说明
            if ( args.length != 3 )
            {
                System.err.println("");
                System.err.println("Usage: Test_1 < input path > < output path > < name >");
                System.err.println("Example: hadoop jar ~/Test_1.jar hdfs://localhost:9000/home/james/Test_1 
    hdfs://localhost:9000/home/james/output hadoop"); System.err.println("Counter:"); System.err.println(" "+"LINESKIP"+" "+"Lines which are too short"); System.exit(-1); } //记录开始时间 DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ); Date start = new Date(); //运行任务 int res = ToolRunner.run(new Configuration(), new Exercise_2(), args); //输出任务耗时 Date end = new Date(); float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ; System.out.println( "任务开始:" + formatter.format(start) ); System.out.println( "任务结束:" + formatter.format(end) ); System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res); } }

    改写test_2

    /**  
     * Hadoop网络课程模板程序
     * 编写者:James
     */  
    
    import java.io.IOException;
    import java.text.DateFormat;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.*;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
     
    /**  
     * 有Reducer版本
     */  
    public class Test_2 extends Configured implements Tool {    
        
        /**  
         * 计数器
         * 用于计数各种异常数据
         */  
        enum Counter 
        {
            LINESKIP,    //出错的行
        }
        
        /**  
         * MAP任务
         */  
        public static class Map extends Mapper<LongWritable, Text, Text, Text> 
        {
            public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException 
            {
                String line = value.toString();                //读取源数据
                
                try
                {
                    //数据处理
                    String [] lineSplit = line.split(" ");
                    String anum = lineSplit[0];
                    String bnum = lineSplit[1];
                    
                    context.write( new Text(bnum), new Text(anum) );    //输出
                }
                catch ( java.lang.ArrayIndexOutOfBoundsException e )
                {
                    context.getCounter(Counter.LINESKIP).increment(1);    //出错令计数器+1
                    return;
                }
            }
        }
    
        /**  
         * REDUCE任务
         */ 
        public static class Reduce extends Reducer<Text, Text, Text, Text> 
        {
            public void reduce ( Text key, Iterable<Text> values, Context context ) throws IOException, InterruptedException
            {
                String valueString;
                String out = "";
    
                String name = context.getConfiguration().get("name");
    
                for ( Text value : values )
                {
                    valueString = value.toString();
                    out += valueString + "|";
                }
                
                context.write( key, new Text(out) + "|" + name );
            }
        }
    
        @Override
        public int run(String[] args) throws Exception 
        {
            Configuration conf = getConf();
    
            conf.set("name", args[2]);
    
            Job job = new Job(conf, "Test_2");                                //任务名
            job.setJarByClass(Test_2.class);                                //指定Class
            
            FileInputFormat.addInputPath( job, new Path(args[0]) );            //输入路径
            FileOutputFormat.setOutputPath( job, new Path(args[1]) );        //输出路径
            
            job.setMapperClass( Map.class );                                //调用上面Map类作为Map任务代码
            job.setReducerClass ( Reduce.class );                            //调用上面Reduce类作为Reduce任务代码
            job.setOutputFormatClass( TextOutputFormat.class );
            job.setOutputKeyClass( Text.class );                            //指定输出的KEY的格式
            job.setOutputValueClass( Text.class );                            //指定输出的VALUE的格式
            
            job.waitForCompletion(true);
            
            //输出任务完成情况
            System.out.println( "任务名称:" + job.getJobName() );
            System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) );
            System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() );
            System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() );
            System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() );
    
            return job.isSuccessful() ? 0 : 1;
        }
        
        /**  
         * 设置系统说明
         * 设置MapReduce任务
         */  
        public static void main(String[] args) throws Exception 
        {
            
            //判断参数个数是否正确
            //如果无参数运行则显示以作程序说明
            if ( args.length != 3 )
            {
                System.err.println("");
                System.err.println("Usage: Test_2 < input path > < output path > ");
                System.err.println("Example: hadoop jar ~/Test_2.jar hdfs://localhost:9000/home/james/Test_2 hdfs://localhost:9000/home/james/output hadoop");
                System.err.println("Counter:");
                System.err.println("	"+"LINESKIP"+"	"+"Lines which are too short");
                System.exit(-1);
            }
            
            //记录开始时间
            DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" );
            Date start = new Date();
            
            //运行任务
            int res = ToolRunner.run(new Configuration(), new Test_2(), args);
    
            //输出任务耗时
            Date end = new Date();
            float time =  (float) (( end.getTime() - start.getTime() ) / 60000.0) ;
            System.out.println( "任务开始:" + formatter.format(start) );
            System.out.println( "任务结束:" + formatter.format(end) );
            System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); 
    
            System.exit(res);
        }
    }

    result_2

    10086    13599999999|13722222222|18944444444|hadoop
    120    18800000000|hadoop
    13800138000    13944444444|13722222222|hadoop
  • 相关阅读:
    JavaScript 各种遍历方式详解
    使用TortoiseGit操作分支的创建与合并
    前端实现图片压缩上传
    改变input的value值,同时在HTML中将value进行改变
    HTML中字体单位px pt em之间的转换
    解决PHP无法接收post超过1000个字段的问题
    解决微信不能扫描下载的问题
    实现类似于百度实时搜索将结果在下拉框中显示的功能
    Python导入路径含特殊字符的包
    大二秋学期记录
  • 原文地址:https://www.cnblogs.com/zl0372/p/map_reduce.html
Copyright © 2011-2022 走看看