zoukankan      html  css  js  c++  java
  • jump-game i&&ii 能否跳出区间 贪心

    I:

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Determine if you are able to reach the last index.

    For example:
    A =[2,3,1,1,4], returntrue.

    A =[3,2,1,0,4], returnfalse.

     维护一个当前能跳到的最大值maxJump, 若是maxJump 已经>=nums.length-1, 说明能跳到最后一个点,return true.若是过程中maxJump <= i, 说明跳到当前点便不能往前,跳出loop, return false.

    class Solution {
    public:
        bool canJump(int A[], int n) {
            int cur=0;
            for(int i=0;i<n;++i)
            {
                if(i>cur ||cur>=n-1)
                    break;
                cur=max(cur,i+A[i]);
            }
            return cur>=n-1;
        }
    };

     II:

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Your goal is to reach the last index in the minimum number of jumps.

    For example:
    Given array A =[2,3,1,1,4]

    The minimum number of jumps to reach the last index is2. (Jump1step from index 0 to 1, then3steps to the last index.)

    class Solution {
    public:
        int jump(int A[], int n) {
            vector<int> dp(n,0);// dp存放都到各点的最小步数
            
            for(int i=0;i<n;++i)
            {
                int max=min(i+A[i],n-1);// 从i点出发能走的最远距离
                for(int j=i+1;j<=max;++j)
                {
                    if(dp[j]==0)
                        dp[j]=dp[i]+1;// 如果位置没被走过,则到达j点的步数为dp[i]+1
                }
                if(dp[n-1]!=0) break;// 当第一次到达终点时,肯定是到达终点最短的步数
            }
            return dp[n-1];
        }
    };
  • 相关阅读:
    Spark Streaming 的容错
    Master 接受其它组件的注册
    Spark Context 概述
    Python 使用random模块生成随机数
    Python 中print 和return 的区别
    Python 访问字典(dictionary)中元素
    PIL:处理图像的好模块
    2.线性回归
    3.梯度下降法
    4.pca与梯度上升法
  • 原文地址:https://www.cnblogs.com/zl1991/p/9643719.html
Copyright © 2011-2022 走看看