Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
贪心算法,当连续和sum>0时,sum+=A[i],负责sum=A[i]
class Solution { public: int maxSubArray(int A[], int n) { int max=A[0],sum=0; for(int i=0;i<n;++i) { if(sum<0) sum=A[i]; else sum+=A[i]; max=max<sum?sum:max; } return max; } };