zoukankan      html  css  js  c++  java
  • 304. Range Sum Query 2D

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12
    

    Note:

    1. You may assume that the matrix does not change.
    2. There are many calls to sumRegion function.
    3. You may assume that row1 ≤ row2 and col1 ≤ col2.

     

    Sum(ABCD)=Sum(OD)Sum(OB)Sum(OC)+Sum(OA)

     ps: 注意dp的递推公式

     1 class NumMatrix {
     2 public:
     3     vector<vector<int>> dp;
     4     
     5     NumMatrix(vector<vector<int>> matrix) {
     6         int n =matrix.size();
     7         int m = n==0?0:matrix[0].size();
     8         
     9         
    10         dp = vector<vector<int>>(n+1,vector<int>(m+1,0));
    11         for(int i = 0 ;i<n;i++)
    12             for(int j = 0;j<m;j++){
    13                 dp[i+1][j+1] = dp[i][j+1]+dp[i+1][j]-dp[i][j]+matrix[i][j];
    14             }
    15     }
    16     
    17     int sumRegion(int rows1, int cols1, int rows2, int cols2) {
    18         return dp[rows2+1][cols2+1] - dp[rows1][cols2+1] - dp[rows2+1][cols1] +dp[rows1][cols1];
    19     }
    20 };
    21 
    22 /**
    23  * Your NumMatrix object will be instantiated and called as such:
    24  * NumMatrix obj = new NumMatrix(matrix);
    25  * int param_1 = obj.sumRegion(row1,col1,row2,col2);
    26  */
     
  • 相关阅读:
    arpspoof局域网断网攻击
    2019-2020 SEERC 2019
    2019-2020 XX Open Cup, Grand Prix of Korea
    欧拉函数板子
    Syncthing – 数据同步利器
    程序员的修养 -- 如何写日志(logging)
    css基础
    vim永久设置主题
    基金选择
    如何查看ntp端口是否正常
  • 原文地址:https://www.cnblogs.com/zle1992/p/10466694.html
Copyright © 2011-2022 走看看