np.hstack((X, X2)) array([ <49998x70000 sparse matrix of type '<class 'numpy.float64'>' with 1135520 stored elements in Compressed Sparse Row format>, <49998x70000 sparse matrix of type '<class 'numpy.int64'>' with 1135520 stored elements in Compressed Sparse Row format>], dtype=object)
<49998x1400000 sparse matrix of type '<class 'numpy.float64'>'
with 2271040 stored elements in Compressed Sparse Row format>
from scipy.sparse import hstack
hstack((X, X2))
Using the numpy.hstack
will create an array with two sparse matrix objects.
scipy.sparse.bmat
from scipy.sparse import coo_matrix, bmat >>> A = coo_matrix([[1, 2], [3, 4]]) >>> B = coo_matrix([[5], [6]]) >>> C = coo_matrix([[7]]) >>> bmat([[A, B], [None, C]]).toarray() array([[1, 2, 5], [3, 4, 6], [0, 0, 7]]) >>> >>> bmat([[A, None], [None, C]]).toarray() array([[1, 2, 0], [3, 4, 0], [0, 0, 7]])
归一化
>>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]])
norm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)
The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0).
参考:
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize
https://www.baidu.com/link?url=epjyVGjvTldY3YcjfaWPamA76GuWxnf3ZOH0FAeWHiKqp60g6_dyzM95CAyj30j-IX2YRD0o9zdgTO-nVzqFjEb3GX_Q2leL_uS1_1qCyINyv8rxh0h0lW8aLrINECNW&wd=&eqid=83485e4f0000bc06000000035822acd4