zoukankan      html  css  js  c++  java
  • 1029 Median (25 分)

    1029 Median (25 分)
     

    Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1 = { 11, 12, 13, 14 } is 12, and the median of S2 = { 9, 10, 15, 16, 17 } is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.

    Given two increasing sequences of integers, you are asked to find their median.

    Input Specification:

    Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (≤) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

    Output Specification:

    For each test case you should output the median of the two given sequences in a line.

    Sample Input:

    4 11 12 13 14
    5 9 10 15 16 17
    

    Sample Output:

    13

    内存是得注意,一开始没注意。
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int n,m;
     4 priority_queue<int> q;
     5 
     6 int main(){
     7     ios::sync_with_stdio(false);
     8     cin.tie(0);
     9     cout.tie(0);
    10     int k = 0;
    11     cin >> n;
    12     k += n;
    13     for(int i = 0 ; i < n; i++){
    14         cin >> m;
    15         q.push(m);
    16     }
    17     cin >> n;
    18     k += n;
    19     if(k&1) k++;
    20     k >>= 1;
    21     while(q.size() > k)
    22         q.pop();
    23     for(int i = 0; i < n; i++){
    24         cin >> m;
    25         q.push(m);
    26         while(q.size() > k)
    27             q.pop();
    28     }
    29     cout << q.top() << endl;
    30     return 0;
    31 }
  • 相关阅读:
    第二阶段冲刺总结09
    第二阶段冲刺总结08
    第二阶段冲刺总结07
    51nod 1799 二分答案(分块打表)
    51nod 1574 排列转换(贪心+鸽巢原理)
    Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)
    Codeforces 627D Preorder Test(二分+树形DP)
    BZOJ 2427 软件安装(强连通分量+树形背包)
    BZOJ 2467 生成树(组合数学)
    BZOJ 2462 矩阵模板(二维hash)
  • 原文地址:https://www.cnblogs.com/zllwxm123/p/11071169.html
Copyright © 2011-2022 走看看